Planar perovskite solar cells with long-term stability using ionic liquid additives

被引:909
|
作者
Bai, Sai [1 ,2 ]
Da, Peimei [1 ]
Li, Cheng [3 ,8 ]
Wang, Zhiping [1 ]
Yuan, Zhongcheng [2 ]
Fu, Fan [4 ]
Kawecki, Maciej [5 ,6 ]
Liu, Xianjie [2 ]
Sakai, Nobuya [1 ]
Wang, Jacob Tse-Wei [7 ]
Huettner, Sven [3 ]
Buecheler, Stephan [4 ]
Fahlman, Mats [2 ]
Gao, Feng [1 ,2 ]
Snaith, Henry J. [1 ]
机构
[1] Univ Oxford, Clarendon Lab, Oxford, England
[2] Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden
[3] Univ Bayreuth, Dept Chem, Bayreuth, Germany
[4] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Dubendorf, Switzerland
[5] Empa, Lab Nanoscale Mat Sci, Dubendorf, Switzerland
[6] Univ Basel, Dept Phys, Basel, Switzerland
[7] CSIRO Energy, Mayfield West, NSW, Australia
[8] Xiamen Univ, Sch Elect Sci & Engn, Xiamen, Fujian, Peoples R China
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 瑞士国家科学基金会; 瑞典研究理事会;
关键词
EFFICIENT; CATIONS;
D O I
10.1038/s41586-019-1357-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies(1-4). Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites(5-9), optimizing the interfaces within the device structures(10-13), and using new encapsulation techniques(14,15). However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer-especially under illumination and heat-is arguably the most difficult aspect to mitigate(16-18). Here we incorporate ionic liquids into the perovskite film and thence into positive-intrinsic-negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.
引用
收藏
页码:245 / +
页数:19
相关论文
共 50 条
  • [41] Long-Term Stability of the Oxidized Hole-Transporting Materials used in Perovskite Solar Cells
    Kasparavicius, Ernestas
    Magomedov, Artiom
    Malinauskas, Tadas
    Getautis, Vytautas
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (39) : 9910 - 9918
  • [42] Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide
    Gao, Danpeng
    Li, Bo
    Liu, Qi
    Zhang, Chunlei
    Yu, Zexin
    Li, Shuai
    Gong, Jianqiu
    Qian, Liangchen
    Vanin, Francesco
    Schutt, Kelly
    Davis, Melissa A.
    Palmstrom, Axel F.
    Harvey, Steven P.
    Long, Nicholas J.
    Luther, Joseph M.
    Zeng, Xiao Cheng
    Zhu, Zonglong
    SCIENCE, 2024, 386 (6718) : 187 - 192
  • [43] Environmental risks and strategies for the long-term stability of carbon-based perovskite solar cells
    Meng, F.
    Zhou, Y.
    Gao, L.
    Li, Y.
    Liu, A.
    Zhang, C.
    Fan, M.
    Wei, G.
    Ma, T.
    MATERIALS TODAY ENERGY, 2021, 19
  • [44] Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells
    Chiang, Chien-Hung
    Wu, Chun-Guey
    CHEMSUSCHEM, 2016, 9 (18) : 2666 - 2672
  • [45] A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells
    Wu, Shaohang
    Chen, Rui
    Zhang, Shasha
    Babu, B. Hari
    Yue, Youfeng
    Zhu, Hongmei
    Yang, Zhichun
    Chen, Chuanliang
    Chen, Weitao
    Huang, Yuqian
    Fang, Shaoying
    Liu, Tianlun
    Han, Liyuan
    Chen, Wei
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [46] A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells
    Shaohang Wu
    Rui Chen
    Shasha Zhang
    B. Hari Babu
    Youfeng Yue
    Hongmei Zhu
    Zhichun Yang
    Chuanliang Chen
    Weitao Chen
    Yuqian Huang
    Shaoying Fang
    Tianlun Liu
    Liyuan Han
    Wei Chen
    Nature Communications, 10
  • [47] Enhanced long-term stability of perovskite solar cells by passivating grain boundary with polydimethylsiloxane (PDMS)
    Kim, Woochul
    Park, Jong Bae
    Kim, Hyeonghun
    Kim, Kihyeun
    Park, Jiyoon
    Cho, Sungjun
    Lee, Heon
    Pak, Yusin
    Jung, Gun Young
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) : 20832 - 20839
  • [48] Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability
    Hu, Mingyu
    Chen, Min
    Guo, Peijun
    Zhou, Hua
    Deng, Junjing
    Yao, Yudong
    Jiang, Yi
    Gong, Jue
    Dai, Zhenghong
    Zhou, Yunxuan
    Qian, Feng
    Chong, Xiaoyu
    Feng, Jing
    Schaller, Richard D.
    Zhu, Kai
    Padture, Nitin P.
    Zhou, Yuanyuan
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [49] The Effect of Cs/FA Ratio on the Long-Term Stability of Mixed Cation Perovskite Solar Cells
    Choi, Dong-Hyeok
    Seok, Hae-Jun
    Kim, Su-Kyung
    Kim, Do-Hyung
    Hou, Bo
    Kim, Han-Ki
    SOLAR RRL, 2021, 5 (12):
  • [50] Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells
    Kulbak, Michael
    Gupta, Satyajit
    Kedem, Nir
    Levine, Igal
    Bendikov, Tatyana
    Hodes, Gary
    Cahen, David
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (01): : 167 - 172