Planar perovskite solar cells with long-term stability using ionic liquid additives

被引:909
|
作者
Bai, Sai [1 ,2 ]
Da, Peimei [1 ]
Li, Cheng [3 ,8 ]
Wang, Zhiping [1 ]
Yuan, Zhongcheng [2 ]
Fu, Fan [4 ]
Kawecki, Maciej [5 ,6 ]
Liu, Xianjie [2 ]
Sakai, Nobuya [1 ]
Wang, Jacob Tse-Wei [7 ]
Huettner, Sven [3 ]
Buecheler, Stephan [4 ]
Fahlman, Mats [2 ]
Gao, Feng [1 ,2 ]
Snaith, Henry J. [1 ]
机构
[1] Univ Oxford, Clarendon Lab, Oxford, England
[2] Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden
[3] Univ Bayreuth, Dept Chem, Bayreuth, Germany
[4] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Dubendorf, Switzerland
[5] Empa, Lab Nanoscale Mat Sci, Dubendorf, Switzerland
[6] Univ Basel, Dept Phys, Basel, Switzerland
[7] CSIRO Energy, Mayfield West, NSW, Australia
[8] Xiamen Univ, Sch Elect Sci & Engn, Xiamen, Fujian, Peoples R China
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 瑞士国家科学基金会; 瑞典研究理事会;
关键词
EFFICIENT; CATIONS;
D O I
10.1038/s41586-019-1357-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies(1-4). Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites(5-9), optimizing the interfaces within the device structures(10-13), and using new encapsulation techniques(14,15). However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer-especially under illumination and heat-is arguably the most difficult aspect to mitigate(16-18). Here we incorporate ionic liquids into the perovskite film and thence into positive-intrinsic-negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.
引用
收藏
页码:245 / +
页数:19
相关论文
共 50 条
  • [21] Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives
    Vida Turkovic
    Sebastian Engmann
    Nikos Tsierkezos
    Harald Hoppe
    Morten Madsen
    Horst-Günter Rubahn
    Uwe Ritter
    Gerhard Gobsch
    Applied Physics A, 2016, 122
  • [22] Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives
    Turkovic, Vida
    Engmann, Sebastian
    Tsierkezos, Nikos
    Hoppe, Harald
    Madsen, Morten
    Rubahn, Horst-Gunter
    Ritter, Uwe
    Gobsch, Gerhard
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (03):
  • [23] Improving the Long-Term Stability of Doped Spiro-Type Hole-Transporting Materials in Planar Perovskite Solar Cells
    Urieta-Mora, Javier
    Garcia-Benito, Ines
    Illicachi, Luis A.
    Calbo, Joaquin
    Arago, Juan
    Molina-Ontoria, Agustin
    Orti, Enrique
    Martin, Nazario
    Nazeeruddin, Mohammad Khaja
    SOLAR RRL, 2021, 5 (12)
  • [24] A full overview of international standards assessing the long-term stability of perovskite solar cells
    Holzhey, Philippe
    Saliba, Michael
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (44) : 21794 - 21808
  • [25] Pyridination of hole transporting material in perovskite solar cells questions the long-term stability
    Magomedov, Artiom
    Kasparavicius, Ernestas
    Rakstys, Kasparas
    Paek, Sanghyun
    Gasilova, Natalia
    Genevicius, Kristijonas
    Juska, Gytis
    Malinauskas, Tadas
    Nazeeruddin, Mohammad Khaja
    Getautis, Vytautas
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (33) : 8874 - 8878
  • [27] Enhanced long-term stability of perovskite solar cells by 3-hydroxypyridine dipping
    Fu, Rui
    Zhao, Yicheng
    Li, Qi
    Zhou, Wenke
    Yu, Dapeng
    Zhao, Qing
    CHEMICAL COMMUNICATIONS, 2017, 53 (11) : 1829 - 1831
  • [28] Laser Scribing for Perovskite Solar Modules of Long-Term Stability
    Jeong, Yujin
    Kim, Yejin
    Lee, Hanseul
    Ko, Seoyeon
    Ham, Seung Sik
    Jung, Hye Ri
    Choi, Jun Hwan
    Kim, Won Mok
    Jeong, Jeung-hyun
    Yoon, Seokhyun
    Hwang, David J.
    Kim, Gee Yeong
    SOLAR RRL, 2024, 8 (08)
  • [29] Enhancing the Performance of Perovskite Solar Cells with CPMIMBF4 Ionic Liquid Additives
    Liu, Suolan
    Cui, Along
    Hong, Shiqi
    Shou, Chunhui
    Yang, Songwang
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (15): : 6155 - 6165
  • [30] Improved Power Conversion Efficiency and Stability of Perovskite Solar Cells Induced by Molecular Interaction with Poly(ionic liquid) Additives
    Guan, Nianci
    Wu, Guo
    Wang, Jian
    Bao, Yaqi
    Hui, Wei
    Deng, Zhaoqi
    Gu, Lei
    Gao, Xingyu
    Zhang, Jing
    Muller-Buschbaum, Peter
    Song, Lin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (22) : 26872 - 26881