Planar perovskite solar cells with long-term stability using ionic liquid additives

被引:909
|
作者
Bai, Sai [1 ,2 ]
Da, Peimei [1 ]
Li, Cheng [3 ,8 ]
Wang, Zhiping [1 ]
Yuan, Zhongcheng [2 ]
Fu, Fan [4 ]
Kawecki, Maciej [5 ,6 ]
Liu, Xianjie [2 ]
Sakai, Nobuya [1 ]
Wang, Jacob Tse-Wei [7 ]
Huettner, Sven [3 ]
Buecheler, Stephan [4 ]
Fahlman, Mats [2 ]
Gao, Feng [1 ,2 ]
Snaith, Henry J. [1 ]
机构
[1] Univ Oxford, Clarendon Lab, Oxford, England
[2] Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden
[3] Univ Bayreuth, Dept Chem, Bayreuth, Germany
[4] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Dubendorf, Switzerland
[5] Empa, Lab Nanoscale Mat Sci, Dubendorf, Switzerland
[6] Univ Basel, Dept Phys, Basel, Switzerland
[7] CSIRO Energy, Mayfield West, NSW, Australia
[8] Xiamen Univ, Sch Elect Sci & Engn, Xiamen, Fujian, Peoples R China
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 瑞士国家科学基金会; 瑞典研究理事会;
关键词
EFFICIENT; CATIONS;
D O I
10.1038/s41586-019-1357-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies(1-4). Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites(5-9), optimizing the interfaces within the device structures(10-13), and using new encapsulation techniques(14,15). However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer-especially under illumination and heat-is arguably the most difficult aspect to mitigate(16-18). Here we incorporate ionic liquids into the perovskite film and thence into positive-intrinsic-negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.
引用
收藏
页码:245 / +
页数:19
相关论文
共 50 条
  • [31] Long-term stability of dye solar cells
    Harikisun, Ravi
    Desilvestro, Hans
    SOLAR ENERGY, 2011, 85 (06) : 1179 - 1188
  • [32] FAPbI3-Based Perovskite Solar Cells Employing Hexyl-Based Ionic Liquid with an Efficiency Over 20% and Excellent Long-Term Stability
    Akin, Seckin
    Akman, Erdi
    Sonmezoglu, Savas
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (28)
  • [33] Enhancing Flexibility, Long-Term Stability, and Efficiency in Full Air Fabricated Perovskite Solar Cells via Multifunctional Fluorinated Polyurethane Additives
    Duan, Ruizhi
    Zha, Leying
    Song, Lixin
    Ning, Lei
    Du, Pingfan
    Xiong, Jie
    LANGMUIR, 2024, 40 (50) : 26463 - 26473
  • [34] Enhanced long-term stability of perovskite solar cells using a double-layer hole transport material
    Li, Qi
    Zhao, Yicheng
    Fu, Rui
    Zhou, Wenke
    Zhao, Yao
    Lin, Fang
    Liu, Song
    Yu, Dapeng
    Zhao, Qing
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (28) : 14881 - 14886
  • [35] Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells
    Li, Meng
    Zhao, Chao
    Wang, Zhao-Kui
    Zhang, Cong-Cong
    Lee, Harrison K. H.
    Pockett, Adam
    Barbe, Jeremy
    Tsoi, Wing Chung
    Yang, Ying-Guo
    Carnie, Matthew J.
    Gao, Xing-Yu
    Yang, Wen-Xing
    Durrant, James R.
    Liao, Liang-Sheng
    Jain, Sagar M.
    ADVANCED ENERGY MATERIALS, 2018, 8 (24)
  • [36] Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency
    Seo, Ji-Youn
    Matsui, Taisuke
    Luo, Jingshan
    Correa-Baena, Juan-Pablo
    Giordano, Fabrizio
    Saliba, Michael
    Schenk, Kurt
    Ummadisingu, Amita
    Domanski, Konrad
    Hadadian, Mahboubeh
    Hagfeldt, Anders
    Zakeeruddin, Shaik M.
    Steiner, Ullrich
    Graetzel, Michael
    Abate, Antonio
    ADVANCED ENERGY MATERIALS, 2016, 6 (20)
  • [37] Improving Performance and Stability of Planar Perovskite Solar Cells Through Passivation Effect with Green Additives
    Liu, Fangyv
    Zuo, Xiaokun
    Wang, Kai
    Bao, Huaxi
    Liu, Lu
    Guo, Zhihua
    Wang, Shiwei
    Liu, Shengzhong Frank
    SOLAR RRL, 2021, 5 (04)
  • [38] Detrimental Effect of Unreacted PbI2 on the Long-Term Stability of Perovskite Solar Cells
    Tumen-Ulzii, Ganbaatar
    Qin, Chuanjiang
    Klotz, Dino
    Leyden, Matthew R.
    Wang, Pangpang
    Auffray, Morgan
    Fujihara, Takashi
    Matsushima, Toshinori
    Lee, Jin-Wook
    Lee, Sung-joon
    Yang, Yang
    Adachi, Chihaya
    ADVANCED MATERIALS, 2020, 32 (16)
  • [39] Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability
    Mingyu Hu
    Min Chen
    Peijun Guo
    Hua Zhou
    Junjing Deng
    Yudong Yao
    Yi Jiang
    Jue Gong
    Zhenghong Dai
    Yunxuan Zhou
    Feng Qian
    Xiaoyu Chong
    Jing Feng
    Richard D. Schaller
    Kai Zhu
    Nitin P. Padture
    Yuanyuan Zhou
    Nature Communications, 11
  • [40] Multi-component engineering to enable long-term operational stability of perovskite solar cells
    Xie, Haibing
    Lira-Cantu, Monica
    JOURNAL OF PHYSICS-ENERGY, 2020, 2 (02):