Lattice polygons and Green's theorem

被引:15
|
作者
Schenck, H [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Toric variety; Green's theorem; free resolution; syzygy;
D O I
10.1090/S0002-9939-04-07523-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Associated to an n-dimensional integral convex polytope P is a toric variety X and divisor D, such that the integral points of P represent H-0(O-X( D)). We study the free resolution of the homogeneous coordinate ring +(mis an element ofZ) H-0(mD) as a module over Sym(H-0(O-X( D))). It turns out that a simple application of Green's theorem yields good bounds for the linear syzygies of a projective toric surface. In particular, for a planar polytope P = H-0(O-X(D)), D satisfies Green's condition N-p if partial derivativeP contains at least p + 3 lattice points.
引用
收藏
页码:3509 / 3512
页数:4
相关论文
共 50 条
  • [31] Moduli dimensions of lattice polygons
    Marino Echavarria
    Max Everett
    Shinyu Huang
    Liza Jacoby
    Ralph Morrison
    Ayush K. Tewari
    Raluca Vlad
    Ben Weber
    Journal of Algebraic Combinatorics, 2022, 55 : 559 - 589
  • [32] THE VOLUME POLYNOMIAL OF LATTICE POLYGONS
    Soprunov, Ivan
    Soprunova, Jenya
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024,
  • [33] Stretched polygons in a lattice tube
    Atapour, M.
    Soteros, C. E.
    Whittington, S. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (32)
  • [34] Theorem Discovery Amongst Cyclic Polygons
    Todd, Philip
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2023, 398 : 153 - 164
  • [35] Green's Lemma and Green's Theorem for Gamma-semigroups
    Chinram, R.
    Siammai, P.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2009, 30 (03) : 208 - 213
  • [36] Green's theorem without derivatives
    Fleischer, Isidore
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (01) : 185 - 188
  • [37] A HELLY-TYPE THEOREM FOR POLYGONS
    DERRY, D
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1966, 41 (05): : 290 - &
  • [38] Green's theorem and Gorenstein sequences
    Ahn, Jeaman
    Migliore, Juan C.
    Shin, Yong-Su
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (02) : 387 - 413
  • [39] An extension of Green's theorem.
    Barney, I
    AMERICAN JOURNAL OF MATHEMATICS, 1914, 36 : 137 - 150
  • [40] An extension of Green's area theorem
    Bi, Jian
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2018, 82 : 131 - 137