Lattice polygons and Green's theorem

被引:15
|
作者
Schenck, H [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Toric variety; Green's theorem; free resolution; syzygy;
D O I
10.1090/S0002-9939-04-07523-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Associated to an n-dimensional integral convex polytope P is a toric variety X and divisor D, such that the integral points of P represent H-0(O-X( D)). We study the free resolution of the homogeneous coordinate ring +(mis an element ofZ) H-0(mD) as a module over Sym(H-0(O-X( D))). It turns out that a simple application of Green's theorem yields good bounds for the linear syzygies of a projective toric surface. In particular, for a planar polytope P = H-0(O-X(D)), D satisfies Green's condition N-p if partial derivativeP contains at least p + 3 lattice points.
引用
收藏
页码:3509 / 3512
页数:4
相关论文
共 50 条
  • [21] ON THE AREA OF SQUARE LATTICE POLYGONS
    ENTING, IG
    GUTTMANN, AJ
    JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (3-4) : 475 - 484
  • [22] An extremal property of lattice polygons
    Bliznyakov, Nikolai
    Kondratyev, Stanislav
    PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 205 - 248
  • [23] Lattice polygons and the number 12
    Poonen, B
    Rodriguez-Villegas, F
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (03): : 238 - 250
  • [24] Tiling Polygons with Lattice Triangles
    Steve Butler
    Fan Chung
    Ron Graham
    Miklós Laczkovich
    Discrete & Computational Geometry, 2010, 44 : 896 - 903
  • [25] THE KNOT PROBABILITY IN LATTICE POLYGONS
    VANRENSBURG, EJJ
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15): : 3573 - 3590
  • [26] RANDOM LINKING OF LATTICE POLYGONS
    ORLANDINI, E
    VANRENSBURG, EJ
    TESI, MC
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02): : 335 - 345
  • [27] Newton polygons as lattice points
    Chai, CL
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (05) : 967 - 990
  • [28] Asymptotics of knotted lattice polygons
    Orlandini, E
    Tesi, MC
    van Rensburg, EJJ
    Whittington, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (28): : 5953 - 5967
  • [29] Moduli dimensions of lattice polygons
    Echavarria, Marino
    Everett, Max
    Huang, Shinyu
    Jacoby, Liza
    Morrison, Ralph
    Tewari, Ayush K.
    Vlad, Raluca
    Weber, Ben
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (02) : 559 - 589
  • [30] Tiling Polygons with Lattice Triangles
    Butler, Steve
    Chung, Fan
    Graham, Ron
    Laczkovich, Miklos
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (04) : 896 - 903