Theorem Discovery Amongst Cyclic Polygons

被引:0
|
作者
Todd, Philip [1 ]
机构
[1] Saltire Software, Portland, OR 97223 USA
关键词
D O I
10.4204/EPTCS.398.18
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We examine a class of geometric theorems on cyclic 2n-gons. We prove that if we take n disjoint pairs of sides, each pair separated by an even number of polygon sides, then there is a linear combination of the angles between those sides which is constant. We present a formula for the linear combination, which provides a theorem statement in terms of those angles. We describe a program which uses this result to generate new geometry proof problems and their solutions.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 50 条
  • [1] Theorem Discovery Amongst Cyclic Polygons
    Todd, Philip
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2024, (398):
  • [2] Geometric constructibility of cyclic polygons and a limit theorem
    Czedli, Gabor
    Kunos, Adam
    ACTA SCIENTIARUM MATHEMATICARUM, 2015, 81 (3-4): : 643 - 683
  • [3] CYCLIC POLYGONS
    CARVER, WB
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (06): : 533 - &
  • [4] POINCARES THEOREM FOR FUNDAMENTAL POLYGONS
    MASKIT, B
    ADVANCES IN MATHEMATICS, 1971, 7 (03) : 219 - &
  • [5] A four vertex theorem for polygons
    Tabachnikov, S
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (09): : 830 - 833
  • [6] A Sampling Theorem for Symmetric Polygons
    Walnut, David
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 18 - 21
  • [7] A DEVELOPMENT OF JAORDAN CURVE THEOREM AND SCHOENFLIES THEOREM FOR POLYGONS
    JACKSON, SB
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (09): : 989 - &
  • [8] Cyclic polygons of integer points
    Huxley, M. N.
    Konyagin, S. V.
    ACTA ARITHMETICA, 2009, 138 (02) : 109 - 136
  • [9] THE GEOMETRY OF CYCLIC HYPERBOLIC POLYGONS
    Deblois, Jason
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (03) : 801 - 862
  • [10] Cyclic configurations of spherical polygons
    G. K. Giorgadze
    G. N. Khimshiashvili
    Doklady Mathematics, 2013, 87 : 300 - 303