The spectral-Galerkin approximation of nonlinear eigenvalue problems

被引:3
|
作者
An, Jing [1 ,2 ]
Shen, Jie [3 ,4 ,5 ]
Zhang, Zhimin [1 ,6 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Guizhou, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[5] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[6] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Spectral-Galerkin approximation; Error estimation; Iteration algorithm; Nonlinear eigenvalue problems; GROUND-STATE SOLUTION; EFFICIENT;
D O I
10.1016/j.apnum.2018.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present and analyze a polynomial spectral-Galerkin method for nonlinear elliptic eigenvalue problems of the form -div(A del u) + Vu + f(u(2))u = lambda u, parallel to u parallel to(L2) = 1. We estimate errors of numerical eigenvalues and eigenfunctions. Spectral accuracy is proved under rectangular meshes and certain conditions of f. In addition, we establish optimal error estimation of eigenvalues in some hypothetical conditions. Then we propose a simple iteration scheme to solve the underlying an eigenvalue problem. Finally, we provide some numerical experiments to show the validity of the algorithm and the correctness of the theoretical results. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Efficient Spectral-Galerkin Method for eigenvalue problems
    Jun, Zhang
    Fan Xinyue
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SERVICE SYSTEM (CSSS), 2014, 109 : 102 - 106
  • [2] An Efficient Spectral-Galerkin Approximation and Error Analysis for Maxwell Transmission Eigenvalue Problems in Spherical Geometries
    An, Jing
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) : 157 - 181
  • [3] An Efficient Spectral-Galerkin Approximation and Error Analysis for Maxwell Transmission Eigenvalue Problems in Spherical Geometries
    Jing An
    Zhimin Zhang
    Journal of Scientific Computing, 2018, 75 : 157 - 181
  • [4] Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains
    Jing An
    Huiyuan Li
    Zhimin Zhang
    Numerical Algorithms, 2020, 84 : 427 - 455
  • [5] Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains
    An, Jing
    Li, Huiyuan
    Zhang, Zhimin
    NUMERICAL ALGORITHMS, 2020, 84 (02) : 427 - 455
  • [6] Muntz Ball Polynomials and Muntz Spectral-Galerkin Methods for Singular Eigenvalue Problems
    Yang, Xiu
    Wang, Li-Lian
    Li, Huiyuan
    Sheng, Changtao
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (02)
  • [7] An efficient spectral-Galerkin method based on a dimension reduction scheme for eigenvalue problems of Schrodinger equations
    Zhang, Jun
    Lin, Fubiao
    Wang, JinRong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (06) : 2069 - 2082
  • [8] Müntz Ball Polynomials and Müntz Spectral-Galerkin Methods for Singular Eigenvalue Problems
    Xiu Yang
    Li-Lian Wang
    Huiyuan Li
    Changtao Sheng
    Journal of Scientific Computing, 2023, 96
  • [9] Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains
    Shen, Jie
    Wang, Li-Lian
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) : 1954 - 1978
  • [10] A SATURATION PROPERTY FOR THE SPECTRAL-GALERKIN APPROXIMATION OF A DIRICHLET PROBLEM IN A SQUARE
    Canuto, Claudio
    Nochetto, Ricardo H.
    Stevenson, Rob P.
    Verani, Marco
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (03): : 987 - 1003