The spectral-Galerkin approximation of nonlinear eigenvalue problems

被引:3
|
作者
An, Jing [1 ,2 ]
Shen, Jie [3 ,4 ,5 ]
Zhang, Zhimin [1 ,6 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Guizhou, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[5] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[6] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Spectral-Galerkin approximation; Error estimation; Iteration algorithm; Nonlinear eigenvalue problems; GROUND-STATE SOLUTION; EFFICIENT;
D O I
10.1016/j.apnum.2018.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present and analyze a polynomial spectral-Galerkin method for nonlinear elliptic eigenvalue problems of the form -div(A del u) + Vu + f(u(2))u = lambda u, parallel to u parallel to(L2) = 1. We estimate errors of numerical eigenvalues and eigenfunctions. Spectral accuracy is proved under rectangular meshes and certain conditions of f. In addition, we establish optimal error estimation of eigenvalues in some hypothetical conditions. Then we propose a simple iteration scheme to solve the underlying an eigenvalue problem. Finally, we provide some numerical experiments to show the validity of the algorithm and the correctness of the theoretical results. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条