The spectral-Galerkin approximation of nonlinear eigenvalue problems

被引:3
|
作者
An, Jing [1 ,2 ]
Shen, Jie [3 ,4 ,5 ]
Zhang, Zhimin [1 ,6 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Guizhou, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[5] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[6] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Spectral-Galerkin approximation; Error estimation; Iteration algorithm; Nonlinear eigenvalue problems; GROUND-STATE SOLUTION; EFFICIENT;
D O I
10.1016/j.apnum.2018.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present and analyze a polynomial spectral-Galerkin method for nonlinear elliptic eigenvalue problems of the form -div(A del u) + Vu + f(u(2))u = lambda u, parallel to u parallel to(L2) = 1. We estimate errors of numerical eigenvalues and eigenfunctions. Spectral accuracy is proved under rectangular meshes and certain conditions of f. In addition, we establish optimal error estimation of eigenvalues in some hypothetical conditions. Then we propose a simple iteration scheme to solve the underlying an eigenvalue problem. Finally, we provide some numerical experiments to show the validity of the algorithm and the correctness of the theoretical results. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [31] Generalized Jacobi Spectral-Galerkin Method for Nonlinear Volterra Integral Equations with Weakly Singular Kernels
    Shen, Jie
    Sheng, Changtao
    Wang, Zhongqing
    JOURNAL OF MATHEMATICAL STUDY, 2015, 48 (04): : 315 - 329
  • [32] Automatic rational approximation and linearization of nonlinear eigenvalue problems
    Lietaert, Pieter
    Meerbergen, Karl
    Perez, Javier
    Vandereycken, Bart
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1087 - 1115
  • [33] Modified successive approximation methods for the nonlinear eigenvalue problems
    Chen, Xiao-Ping
    Wei, Wei
    Pan, Xiao-Ming
    APPLIED NUMERICAL MATHEMATICS, 2021, 164 : 190 - 198
  • [34] Approximation of differential eigenvalue problems with a nonlinear dependence on the parameter
    Solov'ev, S. I.
    DIFFERENTIAL EQUATIONS, 2014, 50 (07) : 947 - 954
  • [35] Approximation of differential eigenvalue problems with a nonlinear dependence on the parameter
    S. I. Solov’ev
    Differential Equations, 2014, 50 : 947 - 954
  • [36] A highly efficient spectral-Galerkin method based on tensor product for fourth-order Steklov equation with boundary eigenvalue
    An, Jing
    Bi, Hai
    Luo, Zhendong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [37] A highly efficient spectral-Galerkin method based on tensor product for fourth-order Steklov equation with boundary eigenvalue
    Jing An
    Hai Bi
    Zhendong Luo
    Journal of Inequalities and Applications, 2016
  • [38] Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials
    Ben-Yu Guo
    Jie Shen
    Li-Lian Wang
    Journal of Scientific Computing, 2006, 27 : 305 - 322
  • [39] Spectral approximation of variationally formulated eigenvalue problems on curved domains
    Alonso, Ana
    Dello Russo, Anahí
    Electronic Transactions on Numerical Analysis, 2009, 35 : 69 - 87
  • [40] SPECTRAL APPROXIMATION OF VARIATIONALLY FORMULATED EIGENVALUE PROBLEMS ON CURVED DOMAINS
    Alonso, Ana
    Dello Russo, Anahi
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2009, 35 : 69 - 87