An Efficient Spectral-Galerkin Approximation and Error Analysis for Maxwell Transmission Eigenvalue Problems in Spherical Geometries

被引:0
|
作者
Jing An
Zhimin Zhang
机构
[1] Beijing Computational Science Research Center,School of Mathematical Sciences
[2] Guizhou Normal University,Department of Mathematics
[3] Wayne State University,undefined
来源
关键词
Maxwell transmission eigenvalue problems; Spherical geometry; TE and TM modes; Spectral-Galerkin approximation; Error analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We propose and analyze an efficient spectral-Galerkin approximation for the Maxwell transmission eigenvalue problem in spherical geometry. Using a vector spherical harmonic expansion, we reduce the problem to a sequence of equivalent one-dimensional TE and TM modes that can be solved individually in parallel. For the TE mode, we derive associated generalized eigenvalue problems and corresponding pole conditions. Then we introduce weighted Sobolev spaces based on the pole condition and prove error estimates for the generalized eigenvalue problem. The TM mode is a coupled system with four unknown functions, which is challenging for numerical calculation. To handle it, we design an effective algorithm using Legendre-type vector basis functions. Finally, we provide some numerical experiments to validate our theoretical results and demonstrate the efficiency of the algorithms.
引用
收藏
页码:157 / 181
页数:24
相关论文
共 50 条
  • [1] An Efficient Spectral-Galerkin Approximation and Error Analysis for Maxwell Transmission Eigenvalue Problems in Spherical Geometries
    An, Jing
    Zhang, Zhimin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) : 157 - 181
  • [2] The spectral-Galerkin approximation of nonlinear eigenvalue problems
    An, Jing
    Shen, Jie
    Zhang, Zhimin
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 131 : 1 - 15
  • [3] Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains
    Jing An
    Huiyuan Li
    Zhimin Zhang
    [J]. Numerical Algorithms, 2020, 84 : 427 - 455
  • [4] Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains
    An, Jing
    Li, Huiyuan
    Zhang, Zhimin
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (02) : 427 - 455
  • [5] Efficient Spectral-Galerkin Method for eigenvalue problems
    Jun, Zhang
    Fan Xinyue
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SERVICE SYSTEM (CSSS), 2014, 109 : 102 - 106
  • [6] Efficient spectral-Galerkin methods IV. Spherical geometries
    Shen, J
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04): : 1438 - 1455
  • [7] An efficient spectral-Galerkin approximation based on dimension reduction scheme for transmission eigenvalues in polar geometries
    Ren, Shixian
    Tan, Ting
    An, Jing
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 940 - 955
  • [8] Efficient spectral-Galerkin methods for polar and cylindrical geometries
    Kwan, Y. -Y.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (01) : 170 - 186
  • [9] An efficient spectral-Galerkin method based on a dimension reduction scheme for eigenvalue problems of Schrodinger equations
    Zhang, Jun
    Lin, Fubiao
    Wang, JinRong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (06) : 2069 - 2082
  • [10] Efficient spectral-Galerkin methods .3. Polar and cylindrical geometries
    Shen, J
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06): : 1583 - 1604