Fast modulo 2n-1 and 2n+1 adder using carry-chain on FPGA

被引:0
|
作者
Didier, Laurent-Stephane [1 ]
Jaulmes, Luc [2 ]
机构
[1] Univ Toulon & Var, Lab IMATH, La Garde, France
[2] Univ Politecn Cataluna, CNS, Barcelona Supercomp Ctr, Barcelona, Spain
关键词
Modular adder; carry-chain; FPGA; RNS; 2(n)-1 and 2(n)+1 moduli; MULTIPLICATION; IMPLEMENTATION; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modular addition is a widely used operation in Residue Number System applications. Specific sets of moduli allow fast RNS operations such as binary conversions and multiplications. Most of them use modulo 2(n) - 1 and 2(n) + 1 additions. This paper presents four fast and small architectures for these specific moduli targeting modern FPGAs with fast carry chains. The use of this arithmetic dedicated feature allows fast and small modular adders. Our modulo 2(n) - 1 adders have a single zero representation. Our modulo 2(n) + 1 adders are designed for binary and diminished-one representation with and without zero value management.
引用
收藏
页码:1155 / 1159
页数:5
相关论文
共 50 条
  • [21] Efficient reverse converters for four-moduli sets {2n-1, 2n, 2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n-1-1}
    Cao, B
    Srikanthan, T
    Chang, CH
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2005, 152 (05): : 687 - 696
  • [22] Residue number system to binary converter for the moduli set (2n-1, 2n-1, 2n+1)
    Hiasat, A
    Sweidan, A
    JOURNAL OF SYSTEMS ARCHITECTURE, 2003, 49 (1-2) : 53 - 58
  • [23] Shifter circuits for {2n+1, 2n, 2n-1} RNS
    Bakalis, D.
    Vergos, H. T.
    ELECTRONICS LETTERS, 2009, 45 (01) : 27 - 28
  • [24] A New RNS Scaler for {2n-1, 2n, 2n+1}
    Low, Jeremy Yung Shern
    Chang, Chip Hong
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1431 - 1434
  • [25] Low Power Modulo 2n+1 Multiplier Using Data Aware Adder Tree
    Sakthivel, R.
    Vanitha, M.
    Sanapala, Kishore
    Thirumalesh, K.
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS, 2015, 70 : 355 - 361
  • [26] Design of Reverse Converters for General RNS Moduli Sets {2k, 2n-1, 2n+1, 2n+1-1} and {2k, 2n-1, 2n+1, 2n-1-1} (n even)
    Patronik, Piotr
    Piestrak, Stanislaw J.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (06) : 1687 - 1700
  • [27] An Efficient FPGA Design of Residue-to-Binary Converter for the Moduli Set {2n+1, 2n-1}
    Gbolagade, Kazeem Alagbe
    Voicu, George Razvan
    Cotofana, Sorin Dan
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2011, 19 (08) : 1500 - 1503
  • [28] RNS-to-binary converters for two four-moduli sets {2n-1,2n, 2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n+1+1}
    Mohan, P. V. Ananda
    Premkumar, A. B.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (06) : 1245 - 1254
  • [29] High Speed Comparator for the Moduli {2n, 2n-1, 2n+1}
    Li, Lei
    Li, Guodong
    Zhao, Yingxu
    Yin, Pengsheng
    Zhou, Wanting
    IEICE ELECTRONICS EXPRESS, 2013, 10 (21):
  • [30] Fast parallel-prefix modulo 2n+1 adders
    Efstathiou, C
    Vergos, HT
    Nikolos, D
    IEEE TRANSACTIONS ON COMPUTERS, 2004, 53 (09) : 1211 - 1216