The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation

被引:16
|
作者
Liu Yinping [1 ]
Li Zhibin [1 ]
机构
[1] E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China
关键词
VISCOUS-FLOW;
D O I
10.1016/j.chaos.2007.01.148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the homotopy analysis method for solving the nonlinear modified Korteweg-de Vries equation is implemented with approximate initial conditions. We discuss the case when the problem has solitons or breathers. Sonic numerical examples are presented. (C) 2009 Published by Elsevier Ltd.
引用
下载
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation
    Yildirim, Ahmet
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (10-11): : 621 - 626
  • [2] On the solution of the nonlinear Korteweg-de Vries equation by the homotopy perturbation method
    Yildirim, Ahmet
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2009, 25 (12): : 1127 - 1136
  • [3] Application of the optimal homotopy asymptotic method for the solution of the Korteweg-de Vries equation
    Idrees, M.
    Islam, S.
    Tirmizi, S. I. A.
    Haq, Sirajul
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 1324 - 1333
  • [4] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [6] Homotopy Analysis of Korteweg-de Vries Equation with Time Delay
    Raees, A.
    Xu, H.
    SIXTH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS (ICNM-VI), 2013, : 229 - 233
  • [7] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [8] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [9] Darboux transformation and solution of the modified Korteweg-de Vries equation
    Kemelbekova, G.
    Yesmakhanova, K.
    Tapeeva, S.
    Tungushbaeva, D.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2015, 80 (04): : 98 - 102
  • [10] Numerical solution of complex modified Korteweg-de Vries equation by collocation method
    Ismail, M. S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) : 749 - 759