The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation

被引:16
|
作者
Liu Yinping [1 ]
Li Zhibin [1 ]
机构
[1] E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China
关键词
VISCOUS-FLOW;
D O I
10.1016/j.chaos.2007.01.148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the homotopy analysis method for solving the nonlinear modified Korteweg-de Vries equation is implemented with approximate initial conditions. We discuss the case when the problem has solitons or breathers. Sonic numerical examples are presented. (C) 2009 Published by Elsevier Ltd.
引用
下载
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] Numerical solution of the complex modified Korteweg-de Vries equation by DQM
    Bashan, Ali
    Ucar, Yusuf
    Yagmurlu, N. Murat
    Esen, Alaattin
    INTERNATIONAL CONFERENCE ON QUANTUM SCIENCE AND APPLICATIONS (ICQSA-2016), 2016, 766
  • [22] A new combined soliton solution of the modified Korteweg-de Vries equation
    Wu, Jianping
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [23] A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation
    Turgut Ak
    S. Battal Gazi Karakoc
    Anjan Biswas
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 1109 - 1121
  • [24] A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation
    Ak, Turgut
    Karakoc, S. Battal Gazi
    Biswas, Anjan
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A4): : 1109 - 1121
  • [25] A note on the analytical solution to the modified perturbed Korteweg-de Vries equation
    Demiray, H
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) : 501 - 505
  • [26] Traveling wave solution of Korteweg-de Vries equation using He's homotopy perturbation method
    Ozis, Turgut
    Yildirim, Ahmet
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2007, 8 (02) : 239 - 242
  • [27] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [28] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [29] Application of homotopy perturbation method to solve combined Korteweg de Vries-Modified Korteweg de Vries equation
    School of Mechanic, Islamic Azad University, Jouybar Branch, Jouybar, Iran
    不详
    J. Appl. Sci., 2009, 19 (3587-3592):