Exact solutions to a class of nonlinear Schrodinger-type equations

被引:13
|
作者
Zhang, Jin-Liang [1 ]
Wang, Ming-Liang
机构
[1] Henan Univ Sci & Technol, Coll Sci, Luoyang 471003, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2006年 / 67卷 / 06期
关键词
homogeneous balance principle; nonlinear Schrodinger equation; Rangwala-Rao equation; Gerdjikov-Ivanov equation; Chen-Lee-Lin equation; Ablowitz-Ramani-Segur equation; exact solution;
D O I
10.1007/s12043-006-0019-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of nonlinear Schrodinger-type equations, including the Rangwala-Rao equation, the Gerdjikov-Ivanov equation, the Chen-Lee-Lin equation and the Ablowitz-Ramani-Segur equation are investigated, and the exact solutions are derived with the aid of the homogeneous balance principle, and a set of subsidiary higher order ordinary differential equations (sub-ODEs for short).
引用
下载
收藏
页码:1011 / 1022
页数:12
相关论文
共 50 条
  • [31] Exact explicit traveling wave solutions for two nonlinear Schrodinger type equations
    Geng, Yixiang
    Li, Jibin
    Zhang, Lixiang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1509 - 1521
  • [32] Schrodinger-type evolution equations in Lp(Ω)
    Xiao, TJ
    Liang, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) : 55 - 69
  • [33] Some Exact and Explicit Solutions for Nonlinear Schrodinger Equations
    Aslan, I.
    ACTA PHYSICA POLONICA A, 2013, 123 (01) : 16 - 20
  • [34] On exact solutions of the nonlinear Schrodinger equations in optical fiber
    Li, B
    Chen, Y
    CHAOS SOLITONS & FRACTALS, 2004, 21 (01) : 241 - 247
  • [35] Exact analytic solutions of Schrodinger linear and nonlinear equations
    Kougias, I. E.
    Louvros, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (08) : 2457 - 2462
  • [36] A CLASS OF EXACT SOLUTIONS OF THE GENERALIZED NONLINEAR SCHRODINGER EQUATION
    Zhang, Yi
    Xu, Hong-Xian
    Yao, Cai-Zhen
    Cai, Xiao-Na
    REPORTS ON MATHEMATICAL PHYSICS, 2009, 63 (03) : 427 - 439
  • [37] Multiple solutions for a class of nonlinear Schrodinger equations
    Ding, YH
    Luan, SX
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 207 (02) : 423 - 457
  • [39] Quantified hydrodynamic limits for Schrodinger-type equations without the nonlinear potential
    Kim, Jeongho
    Moon, Bora
    JOURNAL OF EVOLUTION EQUATIONS, 2023, 23 (03)
  • [40] Surfaces and Curves Induced by Nonlinear Schrodinger-Type Equations and Their Spin Systems
    Myrzakul, Akbota
    Nugmanova, Gulgassyl
    Serikbayev, Nurzhan
    Myrzakulov, Ratbay
    SYMMETRY-BASEL, 2021, 13 (10):