Schrodinger-type evolution equations in Lp(Ω)

被引:2
|
作者
Xiao, TJ [1 ]
Liang, J [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
关键词
D O I
10.1006/jmaa.2001.7435
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A(p) be a strongly elliptic operator of order 2m (m is an element of N) in L-p(Omega) (1 less than or equal to p less than or equal to infinity, Omega a bounded domain of R-n) with Dirichlet or Neumann boundary conditions. Of concern is the Cauchy problem for Schrodinger-type evolution equations in L-p(Omega) [GRAPHICS] By showing that iA(p) is the generator of a C-0 group on a certain interpolation space, we obtain results of wellposedness for (*), which arc stronger than those derived from the regularized or integrated groups on L-p(Omega). As a by-product, it is shown that iA(p) is the generator of a (omega + A(p))(-r)-regularized group (omega > 0) on L-p(Omega) for all [GRAPHICS] (C) 2001 Academic Press.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 50 条
  • [1] DECAY OF SOLUTIONS OF SCHRODINGER-TYPE EQUATIONS - APPLICATION TO THEIR REGULARITY IN LP (RN)
    BALABANE, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (10): : 511 - 513
  • [2] Homogenization of Schrodinger-type equations
    Suslina, T. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2016, 50 (03) : 241 - 246
  • [3] Nonlinear singular Schrodinger-type equations
    Lange, H
    Poppenberg, M
    Teismann, H
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 113 - 128
  • [4] The coupled nonlinear Schrodinger-type equations
    Abdelrahman, Mahmoud A. E.
    Hassan, S. Z.
    Inc, Mustafa
    MODERN PHYSICS LETTERS B, 2020, 34 (06):
  • [5] On nonparaxial nonlinear Schrodinger-type equations
    Cano, B.
    Duran, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)
  • [7] On Nonlinear Schrodinger-Type Equations with Nonlinear Damping
    Antonelli, Paolo
    Carles, Remi
    Sparber, Christof
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 740 - 762
  • [8] Semiclassical analysis of discretizations of Schrodinger-type equations
    Markowich, PA
    Pietra, P
    Pohl, C
    VLSI DESIGN, 1999, 9 (04) : 397 - 413
  • [9] Evolution systems for paraxial wave equations of Schrodinger-type with non-smooth coefficients
    de Hoop, Maarten
    Hoermann, Guenther
    Oberguggenberger, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (06) : 1413 - 1432
  • [10] Stationary waves of Schrodinger-type equations with variable exponent
    Repovs, Dusan
    ANALYSIS AND APPLICATIONS, 2015, 13 (06) : 645 - 661