Multiple solutions for a class of nonlinear Schrodinger equations

被引:52
|
作者
Ding, YH [1 ]
Luan, SX [1 ]
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; multibump solution; critical points;
D O I
10.1016/j.jde.2004.07.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find new conditions to ensure the existence of infinitely many homoclinic type solutions for the Schrodinger equation -Deltau + V(x)u = g(x, u) for x is an element of R-N. Assuming V(x) and g(x, it) depend periodically on x, we deal with the situations where g(x, u) is, as \u\ --> infinity, asymptotically linear, or superlinear with certain hypothesis different from ones used in previous related study. Our approach is variational and we use the Cerami condition instead of the Palais-Smale one for deformation arguments. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:423 / 457
页数:35
相关论文
共 50 条