Multiple solutions for a class of sublinear Schrodinger equations

被引:31
|
作者
Zhang, Qingye [1 ]
Wang, Qi [2 ,3 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Peoples R China
[2] Henan Univ, Sch Math & Informat Sci, Kaifeng 475000, Peoples R China
[3] Henan Univ, Inst Contemporary Math, Kaifeng 475000, Peoples R China
关键词
Schrodinger equation; Sublinear; Variational method; SCALAR FIELD-EQUATIONS; EXISTENCE; R(N); RN;
D O I
10.1016/j.jmaa.2011.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of infinitely many nontrivial solutions for a class of sublinear Schrodinger equations -Delta u + V (x)u = f (x, u), where f (x, u) = mu xi(x)vertical bar u vertical bar(mu-2)u with 1 < mu < 2 and xi : R-N -> R being a positive continuous function. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:511 / 518
页数:8
相关论文
共 50 条
  • [1] INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRODINGER EQUATIONS
    Zhang, Wei
    Li, Gui-Dong
    Tang, Chun-Lei
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (05): : 1475 - 1493
  • [2] INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRODINGER EQUATIONS
    Chen, Jing
    Tang, X. H.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02): : 381 - 396
  • [3] MULTIPLE SOLUTIONS OF SUBLINEAR QUASILINEAR SCHRODINGER EQUATIONS WITH SMALL PERTURBATIONS
    Zhang, Liang
    Tang, X. H.
    Chen, Yi
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (02) : 471 - 488
  • [4] Infinitely many solutions for a class of sublinear Schrodinger equations with indefinite potentials
    Bahrouni, Anouar
    Ounaies, Hichem
    Radulescu, Vicentiu D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (03) : 445 - 465
  • [5] Existence and multiplicity of solutions for a class of sublinear Schrodinger-Maxwell equations
    Lv, Ying
    [J]. BOUNDARY VALUE PROBLEMS, 2013,
  • [6] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRODINGER-MAXWELL EQUATIONS
    Liu, Zhisu
    Guo, Shangjiang
    Zhang, Ziheng
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (03): : 857 - 872
  • [7] Remarks on infinitely many solutions for a class of Schrodinger equations with sublinear nonlinearity
    Cheng, Rong
    Wu, Yijia
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (15) : 8527 - 8537
  • [9] Multiple homoclinic solutions for discrete Schrodinger equations with perturbed and sublinear terms
    Chen, Guanwei
    Schechter, Martin
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [10] Multiple solutions of a sublinear Schrodinger equation
    Kristaly, Alexandru
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (3-4): : 291 - 301