Frobenius map on local Calabi-Yau manifolds

被引:0
|
作者
Shapiro, I. [1 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
geometry; polynomials; INSTANTON NUMBERS;
D O I
10.1063/1.3075574
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove results that, for a certain class of noncompact Calabi-Yau threefolds, relate the Frobenius action on their p-adic cohomology to the Frobenius action on the p-adic cohomology of the corresponding curves. In the Appendix, we describe our interpretation of the Griffiths-Dwork method.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Neutral Calabi-Yau structures on Kodaira manifolds
    Fino, A
    Pedersen, H
    Poon, YS
    Sorensen, MW
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (02) : 255 - 268
  • [32] Some results on generalized Calabi-Yau manifolds
    De Bartolomeis, Paolo
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (5-6) : 1273 - 1292
  • [33] Fano manifolds of Calabi-Yau Hodge type
    Iliev, Atanas
    Manivel, Laurent
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) : 2225 - 2244
  • [34] Orientability for gauge theories on Calabi-Yau manifolds
    Cao, Yalong
    Leung, Naichung Conan
    ADVANCES IN MATHEMATICS, 2017, 314 : 48 - 70
  • [35] COLLAPSING OF ABELIAN FIBERED CALABI-YAU MANIFOLDS
    Gross, Mark
    Tosatti, Valentino
    Zhang, Yuguang
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (03) : 517 - 551
  • [36] Crystal Melting and Toric Calabi-Yau Manifolds
    Hirosi Ooguri
    Masahito Yamazaki
    Communications in Mathematical Physics, 2009, 292 : 179 - 199
  • [37] Holomorphic Cartan geometries and Calabi-Yau manifolds
    Biswas, Indranil
    McKay, Benjamin
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (04) : 661 - 663
  • [38] CLASSIFICATION OF ASYMPTOTICALLY CONICAL CALABI-YAU MANIFOLDS
    Conlon, Ronan j.
    Hein, Hans-joachim
    DUKE MATHEMATICAL JOURNAL, 2024, 173 (01) : 947 - 1015
  • [39] Holomorphic Parabolic Geometries and Calabi-Yau Manifolds
    McKay, Benjamin
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [40] GENERALIZED SPACETIME DUALITY IN CALABI-YAU MANIFOLDS
    CVETIC, M
    MOLERA, JM
    OVRUT, BA
    PHYSICS LETTERS B, 1990, 248 (1-2) : 83 - 88