Frobenius map on local Calabi-Yau manifolds

被引:0
|
作者
Shapiro, I. [1 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
geometry; polynomials; INSTANTON NUMBERS;
D O I
10.1063/1.3075574
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove results that, for a certain class of noncompact Calabi-Yau threefolds, relate the Frobenius action on their p-adic cohomology to the Frobenius action on the p-adic cohomology of the corresponding curves. In the Appendix, we describe our interpretation of the Griffiths-Dwork method.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Calabi-Yau manifolds with isolated conical singularities
    Hein, Hans-Joachim
    Sun, Song
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01): : 73 - 130
  • [42] D-Branes on Calabi-Yau manifolds
    Douglas, MR
    EUROPEAN CONGRESS OF MATHEMATICS, VOL II, 2001, 202 : 449 - 466
  • [43] Crystal Melting and Toric Calabi-Yau Manifolds
    Ooguri, Hirosi
    Yamazaki, Masahito
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (01) : 179 - 199
  • [44] Non-Kahler Calabi-Yau Manifolds
    Tseng, Li-Sheng
    Yau, Shing-Tung
    STRING-MATH 2011, 2012, 85 : 241 - +
  • [45] Families of Calabi-Yau Manifolds and Canonical Singularities
    Tosatti, Valentino
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) : 10586 - 10594
  • [46] SEMISTABLE HIGGS BUNDLES ON CALABI-YAU MANIFOLDS
    Bruzzo, U.
    Lanza, V
    Lo Giudice, A.
    ASIAN JOURNAL OF MATHEMATICS, 2019, 23 (06) : 905 - 918
  • [47] Calabi-Yau manifolds and SU(3) structure
    Magdalena Larfors
    Andre Lukas
    Fabian Ruehle
    Journal of High Energy Physics, 2019
  • [48] The arithmetic mirror symmetry and Calabi-Yau manifolds
    Gritsenko, VA
    Nikulin, VV
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (01) : 1 - 11
  • [49] Mirror symmetry and elliptic Calabi-Yau manifolds
    Huang, Yu-Chien
    Taylor, Washington
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (04)
  • [50] D-branes on Calabi-Yau manifolds
    Aspinwall, PS
    PROGRESS IN STRING THEORY: TASI 2003 LECTURE NOTES, 2005, : 1 - 152