Orientability for gauge theories on Calabi-Yau manifolds

被引:28
|
作者
Cao, Yalong [1 ]
Leung, Naichung Conan
机构
[1] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
关键词
Orientability; Moduli spaces of sheaves; Calabi-Yau manifolds; Shifted symplectic structures; Gauge theory; Dirac operators; DONALDSON-THOMAS THEORY; GROMOV-WITTEN THEORY; MODULI SPACES; SHEAVES;
D O I
10.1016/j.aim.2017.04.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study orientability issues of moduli spaces from gauge theories on Calabi-Yau manifolds. Our results generalize and strengthen those for Donaldson Thomas theory on Calabi -Yau manifolds of dimensions 3 and 4. We also prove a corresponding result in the relative situation which is relevant to the gluing formula in DT theory. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 70
页数:23
相关论文
共 50 条
  • [1] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Nam-Hoon Lee
    Journal of High Energy Physics, 2010
  • [2] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Lee, Nam-Hoon
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (04):
  • [3] Generalized Calabi-Yau manifolds
    Hitchin, N
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 281 - 308
  • [4] Calabi-Yau manifolds and their degenerations
    Tosatti, Valentino
    BLAVATNIK AWARDS FOR YOUNG SCIENTISTS 2011, 2012, 1260 : 8 - 13
  • [5] Sasakian quiver gauge theories and instantons on Calabi-Yau cones
    Lechtenfeld, Olaf
    Popov, Alexander D.
    Szabo, Richard J.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 20 (04) : 821 - 882
  • [6] Convergence of Calabi-Yau manifolds
    Ruan, Wei-Dong
    Zhang, Yuguang
    ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1543 - 1589
  • [7] Gauge theoretical construction of non-compact Calabi-Yau manifolds
    Higashijima, K
    Kimura, T
    Nitta, M
    ANNALS OF PHYSICS, 2002, 296 (02) : 347 - 370
  • [8] On solvable generalized Calabi-Yau manifolds
    De Bartolomeis, Paolo
    Tomassini, Adriano
    ANNALES DE L INSTITUT FOURIER, 2006, 56 (05) : 1281 - 1296
  • [9] Entropy of an autoequivalence on Calabi-Yau manifolds
    Fan, Yu-Wei
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 509 - 519
  • [10] Calabi-Yau manifolds and sporadic groups
    Banlaki, Andreas
    Chowdhury, Abhishek
    Kidambi, Abhiram
    Schimpf, Maria
    Skarke, Harald
    Wrase, Timm
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):