Universality class for a one-dimensional evolution model

被引:1
|
作者
Anton, L [1 ]
机构
[1] SCUOLA INT SUPER STUDI AVANZATI, SISSA, INST NAZL FIS MAT, I-34013 TRIESTE, ITALY
关键词
D O I
10.1103/PhysRevE.56.2676
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present numerical evidence that avalanche dynamics in the evolution model has the same universality class as the diffusion equation partial derivative(t)p = x(-alpha)partial derivative(xx)p + upsilon x(-alpha-1)partial derivative(x)p. Numerically we measure the exponent alpha and the drift upsilon and, using the relations provided by the theory of the diffusion equation, we compute the avalanche critical exponent tau and the mass dimension exponent D. The computed values agree; with the previous numerical results.
引用
收藏
页码:2676 / 2679
页数:4
相关论文
共 50 条
  • [31] Search for universality in one-dimensional ballistic annihilation kinetics
    Rey, Pierre-Antoine
    Droz, Michel
    Piasecki, Jaroslaw
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (01):
  • [32] Geometry, universality and dimensional crossovers in weakly coupled one-dimensional conductors
    Kishine, J
    Yonemitsu, K
    SYNTHETIC METALS, 1999, 103 (1-3) : 2650 - 2650
  • [33] Correlation-function asymptotic expansions: Universality of prefactors of the one-dimensional Hubbard model
    Carmelo, JMP
    Penc, K
    PHYSICAL REVIEW B, 2006, 73 (11):
  • [34] UNIVERSALITY IN THE ONE-DIMENSIONAL SELF-ORGANIZED CRITICAL FOREST-FIRE MODEL
    DROSSEL, B
    CLAR, S
    SCHWABL, F
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1994, 49 (09): : 856 - 860
  • [35] Universal relaxational dynamics of gapped one-dimensional models in the quantum sine-Gordon universality class
    Damle, K
    Sachdev, S
    PHYSICAL REVIEW LETTERS, 2005, 95 (18)
  • [36] One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions
    Roy, Dipankar
    Pandit, Rahul
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [37] Derivation of one-dimensional hydrodynamic model for stock price evolution
    Vamos, C
    Suciu, N
    Blaj, W
    PHYSICA A, 2000, 287 (3-4): : 461 - 467
  • [38] Universality classes for thermal transport in one-dimensional oscillator systems
    Lee-Dadswell, G. R.
    PHYSICAL REVIEW E, 2015, 91 (03):
  • [39] Kardar–Parisi–Zhang universality in a one-dimensional polariton condensate
    Quentin Fontaine
    Davide Squizzato
    Florent Baboux
    Ivan Amelio
    Aristide Lemaître
    Martina Morassi
    Isabelle Sagnes
    Luc Le Gratiet
    Abdelmounaim Harouri
    Michiel Wouters
    Iacopo Carusotto
    Alberto Amo
    Maxime Richard
    Anna Minguzzi
    Léonie Canet
    Sylvain Ravets
    Jacqueline Bloch
    Nature, 2022, 608 : 687 - 691
  • [40] Intermittent dissipation and lack of universality in one-dimensional Alfvenic turbulence
    Laveder, D.
    Passot, T.
    Sulem, P. L.
    PHYSICS LETTERS A, 2013, 377 (23-24) : 1535 - 1541