Universal relaxational dynamics of gapped one-dimensional models in the quantum sine-Gordon universality class

被引:49
|
作者
Damle, K
Sachdev, S
机构
[1] Tata Inst Fundamental Res, Dept Theoret Phys, Bombay 400005, Maharashtra, India
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.95.187201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A semiclassical approach to the low-temperature real-time dynamics of generic one-dimensional, gapped models in the sine-Gordon model universality class is developed. Asymptotically exact universal results for correlation functions are obtained in the temperature regime T << Delta, where Delta is the energy gap.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Finite-temperature dynamics in gapped one-dimensional models in the sine-Gordon family
    Kormos, M.
    Voros, D.
    Zarand, G.
    PHYSICAL REVIEW B, 2022, 106 (20)
  • [2] Bound state in a one-dimensional quantum sine-Gordon model
    Yuan, QS
    Chen, YG
    Chen, H
    Zhang, YM
    PHYSICAL REVIEW B, 1998, 57 (03): : 1324 - 1327
  • [3] Elementary excitations of one-dimensional quantum sine-Gordon model
    Pohl Inst. of Solid State Physics, Tongji University, Shanghai 200092, China
    Wuli Xuebao, 6 (1181-1182):
  • [4] REGULARIZED INTEGRABLE VERSION OF THE ONE-DIMENSIONAL QUANTUM SINE-GORDON MODEL
    JAPARIDZE, GI
    NERSESYAN, AA
    WIEGMANN, PB
    PHYSICA SCRIPTA, 1983, 27 (01): : 5 - 7
  • [5] A new approach for one-dimensional sine-Gordon equation
    Akgul, Ali
    Inc, Mustafa
    Kilicman, Adem
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 20
  • [6] GROUP OF INVARIANCE OF (ONE-DIMENSIONAL) SINE-GORDON EQUATION
    LEROY, B
    LETTERE AL NUOVO CIMENTO, 1978, 22 (01): : 17 - 20
  • [7] A numerical method for the one-dimensional sine-Gordon equation
    Bratsos, A. G.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 833 - 844
  • [8] A new approach for one-dimensional sine-Gordon equation
    Ali Akgül
    Mustafa Inc
    Adem Kilicman
    Dumitru Baleanu
    Advances in Difference Equations, 2016
  • [9] FINITE-TEMPERATURE PROPERTIES OF THE DAMPED ONE-DIMENSIONAL QUANTUM SINE-GORDON MODEL
    HIDA, K
    PHYSICAL REVIEW B, 1985, 32 (07): : 4539 - 4545
  • [10] PARAMETRICALLY DRIVEN ONE-DIMENSIONAL SINE-GORDON EQUATION AND CHAOS
    HERBST, BM
    STEEB, WH
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1988, 43 (8-9): : 727 - 733