GROUP OF INVARIANCE OF (ONE-DIMENSIONAL) SINE-GORDON EQUATION

被引:4
|
作者
LEROY, B [1 ]
机构
[1] INST FIS TEOR,RUA PAMPLONA 145,CP 5956,SAO PAULO 01435,BRAZIL
来源
LETTERE AL NUOVO CIMENTO | 1978年 / 22卷 / 01期
关键词
D O I
10.1007/BF02788253
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:17 / 20
页数:4
相关论文
共 50 条
  • [1] A new approach for one-dimensional sine-Gordon equation
    Akgul, Ali
    Inc, Mustafa
    Kilicman, Adem
    Baleanu, Dumitru
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 20
  • [2] A numerical method for the one-dimensional sine-Gordon equation
    Bratsos, A. G.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 833 - 844
  • [3] A new approach for one-dimensional sine-Gordon equation
    Ali Akgül
    Mustafa Inc
    Adem Kilicman
    Dumitru Baleanu
    [J]. Advances in Difference Equations, 2016
  • [4] PARAMETRICALLY DRIVEN ONE-DIMENSIONAL SINE-GORDON EQUATION AND CHAOS
    HERBST, BM
    STEEB, WH
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1988, 43 (8-9): : 727 - 733
  • [5] SINE-GORDON EQUATION AND ONE-DIMENSIONAL ELECTRON-GAS
    HEIDENREICH, R
    SCHROER, B
    SEILER, R
    UHLENBROCK, D
    [J]. PHYSICS LETTERS A, 1975, 54 (02) : 119 - 122
  • [6] Solvability of One-Dimensional Semilinear Hyperbolic Systems and Sine-Gordon Equation
    Hyungjin Huh
    [J]. Journal of Nonlinear Mathematical Physics, 2023, 30 : 1264 - 1271
  • [7] Unbounded One-Dimensional Global Attractor for the Damped Sine-Gordon Equation
    M. Qian
    W.-X. Qin
    G.-X. Wang
    S. Zhu
    [J]. Journal of Nonlinear Science, 2000, 10 : 417 - 432
  • [8] Unbounded one-dimensional global attractor for the damped sine-Gordon equation
    Qian, M
    Qin, WX
    Wang, GX
    Zhu, S
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (04) : 417 - 432
  • [9] One-dimensional global attractor for the damped and driven sine-Gordon equation
    钱敏
    周盛凡
    朱澍
    [J]. Science China Mathematics, 1998, (02) : 113 - 122
  • [10] One-dimensional global attractor for the damped and driven sine-Gordon equation
    Min Qian
    Shengfan Zhou
    Shu Zhu
    [J]. Science in China Series A: Mathematics, 1998, 41 : 113 - 122