Universality class for a one-dimensional evolution model

被引:1
|
作者
Anton, L [1 ]
机构
[1] SCUOLA INT SUPER STUDI AVANZATI, SISSA, INST NAZL FIS MAT, I-34013 TRIESTE, ITALY
关键词
D O I
10.1103/PhysRevE.56.2676
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present numerical evidence that avalanche dynamics in the evolution model has the same universality class as the diffusion equation partial derivative(t)p = x(-alpha)partial derivative(xx)p + upsilon x(-alpha-1)partial derivative(x)p. Numerically we measure the exponent alpha and the drift upsilon and, using the relations provided by the theory of the diffusion equation, we compute the avalanche critical exponent tau and the mass dimension exponent D. The computed values agree; with the previous numerical results.
引用
收藏
页码:2676 / 2679
页数:4
相关论文
共 50 条
  • [21] UNIVERSALITY OF SYMMETRICAL ONE-DIMENSIONAL RANDOM FLIGHTS
    PREZIOSI, B
    COSCIA, V
    FERONE, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (08): : 1403 - 1412
  • [22] Universality of anomalous one-dimensional heat conductivity
    Lepri, S
    Livi, R
    Politi, A
    PHYSICAL REVIEW E, 2003, 68 (06):
  • [23] NEW UNIVERSALITY CLASSES IN ONE-DIMENSIONAL ANTIFERROMAGNETS
    AFFLECK, I
    JOURNAL OF APPLIED PHYSICS, 1987, 61 (08) : 3947 - 3949
  • [24] Nonextensivity at the edge of chaos of a new universality class of one-dimensional unimodal dissipative maps
    G. Ruiz
    C. Tsallis
    The European Physical Journal B, 2009, 67 : 577 - 584
  • [25] Search for universality in one-dimensional ballistic annihilation kinetics
    Rey, PA
    Droz, M
    Piasecki, J
    PHYSICAL REVIEW E, 1998, 57 (01): : 138 - 145
  • [26] ONE-DIMENSIONAL LATTICE GAS AND THE UNIVERSALITY OF THE DEVILS STAIRCASE
    BURKOV, SE
    JOURNAL DE PHYSIQUE LETTRES, 1983, 44 (05): : L179 - L182
  • [27] The intrinsic universality problem of one-dimensional cellular automata
    Ollinger, N
    STACS 2003, PROCEEDINGS, 2003, 2607 : 632 - 641
  • [28] Universality of the one-dimensional Bose gas with delta interaction
    Amico, L
    Korepin, V
    ANNALS OF PHYSICS, 2004, 314 (02) : 496 - 507
  • [29] Universality in a one-dimensional three-body system
    Happ, Lucas
    Zimmermann, Matthias
    Betelu, Santiago, I
    Schleich, Wolfgang P.
    Efremov, Maxim A.
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [30] BULK UNIVERSALITY FOR ONE-DIMENSIONAL LOG-GASES
    Bourgade, P.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 404 - 416