Role of conductive binder to direct solid-electrolyte interphase formation over silicon anodes

被引:15
|
作者
Browning, Katie L. [1 ,2 ]
Browning, James F. [3 ]
Doucet, Mathieu [3 ]
Yamada, Norifumi L. [4 ]
Liu, Gao [5 ]
Veith, Gabriel M. [2 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[4] High Energy Accelerator Res Org, Neutron Sci Lab, 203-1 Shirakata, Naka, Ibaraki 3191106, Japan
[5] Lawrence Berkeley Natl Lab, Electeochem Div, San Francisco, CA USA
关键词
SI-BASED ANODES; NEGATIVE ELECTRODES; POLYMER BINDERS; ION; MODEL;
D O I
10.1039/c9cp02610j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the use of in situ neutron reflectometry (NR) we show how the addition of an electronically conductive polymeric binder, PEFM, mediates the solid-electrolyte interphase (SEI) formation and composition on an amorphous Si (a-Si) electrode as a function of the state-of-charge. Upon initial contact with the electrolyte a Li rich, 41 angstrom thick, layer forms on the surface of the anode below the polymer layer. At 0.8 V (vs. Li/Li+), a distinct SEI layer forms from the incorporation of electrolyte decomposition products in the reaction layer that is organic in nature. In addition, solvent uptake in the PEFM layer occurs resulting in the layer swelling to similar to 200 angstrom. Upon further polarization to 0.4 and 0.15 V (vs. Li/Li+) a thick layer (800 angstrom) on the surface of the Si is evident where a diffuse interface between the PEFM and SEI occurs resulting in a matrix between the two layers, as the binder has taken up a large amount of electrolyte. The two layers appear to be interchanging solvent molecules from the PEFM to the SEI to the Si surface preventing the lithiation of the a-Si. By 0.05 V (vs. Li/Li+) a Li rich, 72 angstrom thick, SEI layer condenses on the surface of the anode, and a 121 angstrom intermixed layer on top of the SEI with LiF and Li-C-O species is present with the rest blended into the electrolyte.
引用
收藏
页码:17356 / 17365
页数:10
相关论文
共 50 条
  • [41] Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries
    Arreaga-Salas, David E.
    Sra, Amandeep K.
    Roodenko, Katy
    Chabal, Yves J.
    Hinkle, Christopher L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16): : 9072 - 9077
  • [42] Unraveling the Solvent Effect on Solid-Electrolyte Interphase Formation for Sodium Metal Batteries
    Wang, Shiyang
    Weng, Suting
    Li, Xinpeng
    Liu, Yue
    Huang, Xiangling
    Jie, Yulin
    Pan, Yuxue
    Zhou, Hongmin
    Jiao, Shuhong
    Li, Qi
    Wang, Xuefeng
    Cheng, Tao
    Cao, Ruiguo
    Xu, Dongsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (50)
  • [43] The Electrochemical Mechanisms of Solid-Electrolyte Interphase Formation in Lithium-Based Batteries
    Gialampouki, Martha A.
    Hashemi, Javad
    Peterson, Andrew A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (33): : 20084 - 20092
  • [44] Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes
    Wang, Luning
    Lin, Yuxiao
    Decarlo, Samantha
    Wang, Yi
    Leung, Kevin
    Qi, Yue
    Xu, Kang
    Wang, Chunsheng
    Eichhorn, Bryan W.
    CHEMISTRY OF MATERIALS, 2020, 32 (09) : 3765 - 3775
  • [45] Effects of Atmospheric Gases on Li Metal Cyclability and Solid-Electrolyte Interphase Formation
    Wang, Evelyna
    Dey, Sunita
    Liu, Tao
    Menkin, Svetlana
    Grey, Clare P.
    ACS ENERGY LETTERS, 2020, 5 (04): : 1088 - 1094
  • [46] Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties
    Zhang, Zhenyu
    Smith, Keenan
    Jervis, Rhodri
    Shearing, Paul R.
    Miller, Thomas S.
    Brett, Daniel J. L.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (31) : 35132 - 35141
  • [47] Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes
    Leung, Kevin
    Budzien, Joanne L.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (25) : 6583 - 6586
  • [48] Dynamic Structure and Chemistry of the Silicon Solid-Electrolyte Interphase Visualized by Cryogenic Electron Microscopy
    Huang, William
    Wang, Jiangyan
    Braun, Michael R.
    Zhang, Zewen
    Li, Yuzhang
    Boyle, David T.
    McIntyre, Paul C.
    Cui, Yi
    MATTER, 2019, 1 (05) : 1232 - 1245
  • [49] Solid-Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics
    Ganesh, P.
    Kent, P. R. C.
    Jiang, De-en
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (46): : 24476 - 24481
  • [50] Reduction Mechanism of Fluoroethylene Carbonate for Stable Solid-Electrolyte Interphase Film on Silicon Anode
    Chen, Xilin
    Li, Xiaolin
    Mei, Donghai
    Feng, Ju
    Hu, Mary Y.
    Hu, Jianzhi
    Engelhard, Mark
    Zheng, Jianming
    Xu, Wu
    Xiao, Jie
    Liu, Jun
    Zhang, Ji-Guang
    CHEMSUSCHEM, 2014, 7 (02) : 549 - 554