Role of conductive binder to direct solid-electrolyte interphase formation over silicon anodes

被引:15
|
作者
Browning, Katie L. [1 ,2 ]
Browning, James F. [3 ]
Doucet, Mathieu [3 ]
Yamada, Norifumi L. [4 ]
Liu, Gao [5 ]
Veith, Gabriel M. [2 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[4] High Energy Accelerator Res Org, Neutron Sci Lab, 203-1 Shirakata, Naka, Ibaraki 3191106, Japan
[5] Lawrence Berkeley Natl Lab, Electeochem Div, San Francisco, CA USA
关键词
SI-BASED ANODES; NEGATIVE ELECTRODES; POLYMER BINDERS; ION; MODEL;
D O I
10.1039/c9cp02610j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the use of in situ neutron reflectometry (NR) we show how the addition of an electronically conductive polymeric binder, PEFM, mediates the solid-electrolyte interphase (SEI) formation and composition on an amorphous Si (a-Si) electrode as a function of the state-of-charge. Upon initial contact with the electrolyte a Li rich, 41 angstrom thick, layer forms on the surface of the anode below the polymer layer. At 0.8 V (vs. Li/Li+), a distinct SEI layer forms from the incorporation of electrolyte decomposition products in the reaction layer that is organic in nature. In addition, solvent uptake in the PEFM layer occurs resulting in the layer swelling to similar to 200 angstrom. Upon further polarization to 0.4 and 0.15 V (vs. Li/Li+) a thick layer (800 angstrom) on the surface of the Si is evident where a diffuse interface between the PEFM and SEI occurs resulting in a matrix between the two layers, as the binder has taken up a large amount of electrolyte. The two layers appear to be interchanging solvent molecules from the PEFM to the SEI to the Si surface preventing the lithiation of the a-Si. By 0.05 V (vs. Li/Li+) a Li rich, 72 angstrom thick, SEI layer condenses on the surface of the anode, and a 121 angstrom intermixed layer on top of the SEI with LiF and Li-C-O species is present with the rest blended into the electrolyte.
引用
收藏
页码:17356 / 17365
页数:10
相关论文
共 50 条
  • [31] Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries
    Won Jun Chang
    Su Han Kim
    Jiseon Hwang
    Jinho Chang
    Dong won Yang
    Sun Sang Kwon
    Jin Tae Kim
    Won Woo Lee
    Jae Hyung Lee
    Hyunjung Park
    Taeseup Song
    In-Hwan Lee
    Dongmok Whang
    Won Il Park
    Nature Communications, 9
  • [32] Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries
    Chang, Won Jun
    Kim, Su Han
    Hwang, Jiseon
    Chang, Jinho
    Yang, Dong Won
    Kwon, Sun Sang
    Kim, Jin Tae
    Lee, Won Woo
    Lee, Jae Hyung
    Park, Hyunjung
    Song, Taeseup
    Lee, In-Hwan
    Whang, Dongmok
    Park, Won Il
    NATURE COMMUNICATIONS, 2018, 9
  • [33] Cryo-EM Reveals the Structure and Chemistry of the Silicon Solid-Electrolyte Interphase
    Wang, Jiangyan
    Wang, Dan
    CHEM, 2020, 6 (02): : 331 - 334
  • [34] Operando Terahertz Spectroscopy of Solid Electrolyte Interphase Evolution on Silicon Anodes
    Krotkov, Daniel
    Schneier, Dan
    Menkin, Svetlana
    Horowitz, Yonatan
    Peled, Emanuel
    Golodnitsky, Diana
    Fleischer, Sharly
    BATTERIES & SUPERCAPS, 2022, 5 (01)
  • [35] Solid-Electrolyte Interphase of Molecular Crowding Electrolytes
    Xie, Jing
    Guan, Yuepeng
    Huang, Yaqin
    Lu, Yi-Chun
    CHEMISTRY OF MATERIALS, 2022, 34 (11) : 5176 - 5183
  • [36] Regulating adhesion of solid-electrolyte interphase to silicon via covalent bonding strategy towards high Coulombic-efficiency anodes
    Yan, Yuantao
    He, Yu-Shi
    Zhao, Xiaoli
    Zhao, Wanyu
    Ma, Zi-Feng
    Yang, Xiaowei
    NANO ENERGY, 2021, 84
  • [37] Borate-Based Artificial Solid-Electrolyte Interphase Enabling Stable Lithium Metal Anodes
    Li, Menghao
    Yang, Xuming
    Wu, Duojie
    Zhang, Qing
    Wei, Xianbin
    Cheng, Yifeng
    Gu, M. Danny
    ACS APPLIED MATERIALS & INTERFACES, 2023, 16 (49) : 66819 - 66825
  • [38] Efficient Low-Temperature Cycling of Lithium Metal Anodes by Tailoring the Solid-Electrolyte Interphase
    Thenuwara, Akila C.
    Shetty, Pralav P.
    Kondekar, Neha
    Sandoval, Stephanie E.
    Cavallaro, Kelsey
    May, Richard
    Yang, Chi-Ta
    Marbella, Lauren E.
    Qi, Yue
    McDowell, Matthew T.
    ACS ENERGY LETTERS, 2020, 5 (07): : 2411 - 2420
  • [39] The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for "Water-in-Salt" electrolytes
    Dubouis, Nicolas
    Lemaire, Pierre
    Mirvaux, Boris
    Salager, Elodie
    Deschamps, Michael
    Grimaud, Alexis
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (12) : 3491 - 3499
  • [40] Undervalued Roles of Binder in Modulating Solid Electrolyte Interphase Formation of Silicon-Based Anode Materials
    Han, Lin
    Liu, Tiefeng
    Sheng, Ouwei
    Liu, Yujing
    Wang, Yao
    Nai, Jianwei
    Zhang, Liang
    Tao, Xinyong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (38) : 45139 - 45148