Role of conductive binder to direct solid-electrolyte interphase formation over silicon anodes

被引:15
|
作者
Browning, Katie L. [1 ,2 ]
Browning, James F. [3 ]
Doucet, Mathieu [3 ]
Yamada, Norifumi L. [4 ]
Liu, Gao [5 ]
Veith, Gabriel M. [2 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[4] High Energy Accelerator Res Org, Neutron Sci Lab, 203-1 Shirakata, Naka, Ibaraki 3191106, Japan
[5] Lawrence Berkeley Natl Lab, Electeochem Div, San Francisco, CA USA
关键词
SI-BASED ANODES; NEGATIVE ELECTRODES; POLYMER BINDERS; ION; MODEL;
D O I
10.1039/c9cp02610j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the use of in situ neutron reflectometry (NR) we show how the addition of an electronically conductive polymeric binder, PEFM, mediates the solid-electrolyte interphase (SEI) formation and composition on an amorphous Si (a-Si) electrode as a function of the state-of-charge. Upon initial contact with the electrolyte a Li rich, 41 angstrom thick, layer forms on the surface of the anode below the polymer layer. At 0.8 V (vs. Li/Li+), a distinct SEI layer forms from the incorporation of electrolyte decomposition products in the reaction layer that is organic in nature. In addition, solvent uptake in the PEFM layer occurs resulting in the layer swelling to similar to 200 angstrom. Upon further polarization to 0.4 and 0.15 V (vs. Li/Li+) a thick layer (800 angstrom) on the surface of the Si is evident where a diffuse interface between the PEFM and SEI occurs resulting in a matrix between the two layers, as the binder has taken up a large amount of electrolyte. The two layers appear to be interchanging solvent molecules from the PEFM to the SEI to the Si surface preventing the lithiation of the a-Si. By 0.05 V (vs. Li/Li+) a Li rich, 72 angstrom thick, SEI layer condenses on the surface of the anode, and a 121 angstrom intermixed layer on top of the SEI with LiF and Li-C-O species is present with the rest blended into the electrolyte.
引用
收藏
页码:17356 / 17365
页数:10
相关论文
共 50 条
  • [21] Examining CO2 as an Additive for Solid Electrolyte Interphase Formation on Silicon Anodes
    Hopkins, Emma J.
    Frisco, Sarah
    Pekarek, Ryan T.
    Stetson, Caleb
    Huey, Zoey
    Harvey, Steven
    Li, Xiang
    Key, Baris
    Fang, Chen
    Liu, Gao
    Yang, Guang
    Teeter, Glenn
    Neale, Nathan R.
    Veith, Gabriel M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (03)
  • [22] Formation of a Stable Solid-Electrolyte Interphase at Metallic Lithium Anodes Induced by LiNbO3 Protective Layers
    Jiang, Ming
    Zhang, Qian
    Danilov, Dmitri L.
    Eichel, Rudiger-A
    Notten, Peter H. L.
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09): : 10333 - 10343
  • [23] Electron transfer in the solid-electrolyte interphase
    Miller, Thomas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [24] Interplay between solid-electrolyte interphase and (in)active LixSi in silicon anode
    Zhang, Xiao
    Weng, Suting
    Yang, Gaojing
    Li, Yejing
    Li, Hong
    Su, Dong
    Gu, Lin
    Wang, Zhaoxiang
    Wang, Xuefeng
    Chen, Liquan
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (12):
  • [25] In-situ construction of fluorinated solid-electrolyte interphase for highly reversible zinc anodes
    Jian, Qinping
    Wang, Tianshuai
    Sun, Jing
    Wu, Maochun
    Zhao, Tianshou
    ENERGY STORAGE MATERIALS, 2022, 53 : 559 - 568
  • [26] Effects of Polymer Coating Mechanics at Solid-Electrolyte Interphase for Stabilizing Lithium Metal Anodes
    Huang, Zhuojun
    Choudhury, Snehashis
    Paul, Neelima
    Thienenkamp, Johannes Helmut
    Lennartz, Peter
    Gong, Huaxin
    Muller-Buschbaum, Peter
    Brunklaus, Gunther
    Gilles, Ralph
    Bao, Zhenan
    ADVANCED ENERGY MATERIALS, 2022, 12 (05)
  • [27] Topological Considerations in Electrolyte Additives for Passivating Silicon Anodes with Hybrid Solid-Electrolyte Interphases
    Ko, Youngmin
    Bae, Jiwoong
    Chen, Gan
    Baird, Michael A.
    Yan, Jiajun
    Klivansky, Liana
    Kim, Dong-Min
    Trask, Stephen E.
    Rodrigues, Marco-Tulio Fonseca
    Carroll, Gerard M.
    Neale, Nathan R.
    Helms, Brett A.
    ACS ENERGY LETTERS, 2024, 9 (07): : 3448 - 3455
  • [28] Review on multi-scale models of solid-electrolyte interphase formation
    Horstmann, Birger
    Single, Fabian
    Latz, Arnulf
    CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 13 : 61 - 69
  • [29] Microgravimetric and Spectroscopic Analysis of Solid-Electrolyte Interphase Formation in Presence of Additives
    Ivanov, Svetlozar
    Mai, Sebastian
    Himmerlich, Marcel
    Dimitrova, Anna
    Krischok, Stefan
    Bund, Andreas
    CHEMPHYSCHEM, 2019, 20 (05) : 655 - 664
  • [30] Solvent oligomerization pathways facilitated by electrolyte additives during solid-electrolyte interphase formation
    Gibson, Luke D.
    Pfaendtner, Jim
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (37) : 21494 - 21503