Detecting order and chaos in Hamiltonian systems by the SALI method

被引:133
|
作者
Skokos, C [1 ]
Antonopoulos, C
Bountis, TC
Vrahatis, MN
机构
[1] Univ Patras, Dept Math, Div Appl Anal, GR-26500 Patras, Greece
[2] Univ Patras, CRANS, GR-26500 Patras, Greece
[3] Acad Athens, Res Ctr Astron, GR-10673 Athens, Greece
[4] Univ Patras, Dept Math, GR-26110 Patras, Greece
[5] Univ Patras, UPAIRC, GR-26110 Patras, Greece
来源
关键词
D O I
10.1088/0305-4470/37/24/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the smaller alignment index (SALI) to distinguish rapidly and with certainty between ordered and chaotic motion in Hamiltonian flows. This distinction is based on the different behaviour of the SALI for the two cases: the index fluctuates around non-zero values for ordered orbits, while it tends rapidly to zero for chaotic orbits. We present a detailed study of SALI's behaviour for chaotic orbits and show that in this case the SALI exponentially converges to zero, following a time rate depending on the difference of the two largest Lyapunov exponents sigma(1), sigma(2) i.e. SALI proportional to e(-(sigma1-sigma2)t). Exploiting the advantages of the SALI method, we demonstrate how one can rapidly identify even tiny regions of order or chaos in the phase space of Hamiltonian systems of two and three degrees of freedom.
引用
收藏
页码:6269 / 6284
页数:16
相关论文
共 50 条
  • [41] Hamiltonian structure of Hamiltonian chaos
    Tang, X.Z.
    Boozer, A.H.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 236 (5-6): : 476 - 482
  • [42] Hamiltonian structure of Hamiltonian chaos
    Tang, XZ
    Boozer, AH
    PHYSICS LETTERS A, 1997, 236 (5-6) : 476 - 482
  • [43] Internal chaotic sea structure and chaos-chaos intermittency in Hamiltonian systems
    Naplekov, D. M.
    Yanovsky, V. V.
    PHYSICAL REVIEW E, 2021, 103 (02)
  • [44] INHIBITION OF CHAOS IN HAMILTONIAN-SYSTEMS BY PERIODIC PULSES
    CHACON, R
    PHYSICAL REVIEW E, 1994, 50 (02): : 750 - 753
  • [45] Chaos and exponentially localized eigenstates in smooth Hamiltonian systems
    Santhanam, M.S.
    Sheorey, V.B.
    Lakshminarayan, A.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (01):
  • [46] DYNAMICAL CORRELATIONS AND CHAOS IN CLASSICAL HAMILTONIAN-SYSTEMS
    KOSLOFF, R
    RICE, SA
    JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (03): : 1947 - 1955
  • [47] CHAOS AND NONUNITARY EVOLUTION IN NONINTEGRABLE HAMILTONIAN-SYSTEMS
    PETROSKY, TY
    PHYSICAL REVIEW A, 1985, 32 (06): : 3716 - 3725
  • [48] Effect of dissipation on the Hamiltonian chaos in coupled oscillator systems
    Sheeja, V
    Sabir, M
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (04): : 859 - 867
  • [49] MEASURING THE TOTAL AMOUNT OF CHAOS IN SOME HAMILTONIAN SYSTEMS
    Simo, Carles
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (12) : 5135 - 5164
  • [50] HAMILTONIAN-SYSTEMS - CHAOS AND QUANTIZATION - DEALMEIDA,AMO
    OTT, E
    SCIENCE, 1989, 245 (4925) : 1516 - 1516