Hamiltonian structure of Hamiltonian chaos

被引:7
|
作者
Tang, XZ [1 ]
Boozer, AH
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(97)00797-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From a kinematical point of view, the geometrical information of Hamiltonian chaos is given by the (un) stable directions, while the dynamical information is given by the Lyapunov exponents. The finite time Lyapunov exponents are of particular importance in physics. The spatial variations of the finite time Lyapunov exponent and its associated (un)stable direction are related. Both of them are found to be determined by a new Hamiltonian of the same number of degrees of freedom as the original one. This new Hamiltonian defines a flow field with characteristically chaotic trajectories. The direction and the magnitude of the phase flow field give the (un)stable direction and the finite time Lyapunov exponent of the original Hamiltonian. Our analysis was based on a 1 1/2 degree of freedom Hamiltonian system. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:476 / 482
页数:7
相关论文
共 50 条
  • [1] Hamiltonian structure of Hamiltonian chaos
    Tang, X.Z.
    Boozer, A.H.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 236 (5-6): : 476 - 482
  • [2] DEPENDENCE OF HAMILTONIAN CHAOS ON PERTURBATION STRUCTURE
    Yang, Huijun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (04): : 1013 - 1028
  • [3] HAMILTONIAN CHAOS
    ESCANDE, D
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1987, 42 (5-6): : 210 - 216
  • [4] Hamiltonian chaos
    Cresson, J
    COMPUTING ANTICIPATORY SYSTEMS, 2000, 517 : 510 - 525
  • [5] Hamiltonian chaos VI
    Regez, Nicolas
    Breymann, Wolfgang
    Weigert, Stefan
    Kaufman, Charles
    Muller, Gerhard
    Computers in Physics, 1996, 10 (01):
  • [6] Multidimensional Hamiltonian chaos
    Shilnikov, L. P.
    CHAOS, 1991, 1 (02)
  • [7] HAMILTONIAN AND DISSIPATIVE CHAOS
    SCHMIDT, G
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1987, 497 : 97 - 109
  • [8] Geometry of Hamiltonian chaos
    Horwitz, Lawrence
    Ben Zion, Yossi
    Lewkowicz, Meir
    Schiffer, Marcelo
    Levitan, Jacob
    PHYSICAL REVIEW LETTERS, 2007, 98 (23)
  • [9] MULTIDIMENSIONAL HAMILTONIAN CHAOS
    ZASLAVSKY, GM
    ZAKHAROV, MY
    NEISHTADT, AI
    SAGDEEV, RZ
    USIKOV, DA
    CHERNIKOV, AA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1989, 96 (05): : 1563 - 1586
  • [10] CONTROLLING HAMILTONIAN CHAOS
    LAI, YC
    DING, MZ
    GREBOGI, C
    PHYSICAL REVIEW E, 1993, 47 (01): : 86 - 92