Detecting order and chaos in Hamiltonian systems by the SALI method

被引:133
|
作者
Skokos, C [1 ]
Antonopoulos, C
Bountis, TC
Vrahatis, MN
机构
[1] Univ Patras, Dept Math, Div Appl Anal, GR-26500 Patras, Greece
[2] Univ Patras, CRANS, GR-26500 Patras, Greece
[3] Acad Athens, Res Ctr Astron, GR-10673 Athens, Greece
[4] Univ Patras, Dept Math, GR-26110 Patras, Greece
[5] Univ Patras, UPAIRC, GR-26110 Patras, Greece
来源
关键词
D O I
10.1088/0305-4470/37/24/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the smaller alignment index (SALI) to distinguish rapidly and with certainty between ordered and chaotic motion in Hamiltonian flows. This distinction is based on the different behaviour of the SALI for the two cases: the index fluctuates around non-zero values for ordered orbits, while it tends rapidly to zero for chaotic orbits. We present a detailed study of SALI's behaviour for chaotic orbits and show that in this case the SALI exponentially converges to zero, following a time rate depending on the difference of the two largest Lyapunov exponents sigma(1), sigma(2) i.e. SALI proportional to e(-(sigma1-sigma2)t). Exploiting the advantages of the SALI method, we demonstrate how one can rapidly identify even tiny regions of order or chaos in the phase space of Hamiltonian systems of two and three degrees of freedom.
引用
收藏
页码:6269 / 6284
页数:16
相关论文
共 50 条
  • [31] Detecting chaos in fractional-order nonlinear systems using the smaller alignment index
    He, Shaobo
    Sun, Kehui
    Peng, Yuexi
    PHYSICS LETTERS A, 2019, 383 (19) : 2267 - 2271
  • [32] ON SECOND ORDER HAMILTONIAN SYSTEMS
    Smetanova, Dana
    ARCHIVUM MATHEMATICUM, 2006, 42 : 341 - 347
  • [33] An asymptotic method for constructing the Poincare mapping in describing the transition to dynamical chaos in Hamiltonian systems
    Petrov, AG
    DOKLADY MATHEMATICS, 2002, 65 (01) : 114 - 118
  • [34] A simple method for detecting chaos in nature
    Daniel Toker
    Friedrich T. Sommer
    Mark D’Esposito
    Communications Biology, 3
  • [35] A simple method for detecting chaos in nature
    Toker, Daniel
    Sommer, Friedrich T.
    D'Esposito, Mark
    COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [36] Order and Chaos in Dynamical Systems
    George Contopoulos
    Milan Journal of Mathematics, 2009, 77 : 101 - 126
  • [37] Order and Chaos in Dynamical Systems
    Contopoulos, George
    MILAN JOURNAL OF MATHEMATICS, 2009, 77 (01) : 101 - 126
  • [38] ORDER AND CHAOS IN ECOLOGICAL SYSTEMS
    SCHAFFER, WM
    ECOLOGY, 1985, 66 (01) : 93 - 106
  • [39] Analysing chaos in fractional-order systems with the harmonic balance method
    Wu Zheng-Mao
    Lu Jun-Guo
    Xie Jian-Ying
    CHINESE PHYSICS, 2006, 15 (06): : 1201 - 1207
  • [40] Analysing chaos in fractional-order systems with the harmonic balance method
    Department of Automation, Shanghai Jiaotong University, Shanghai 200030, China
    Chin. Phys., 2006, 6 (1201-1207):