Non abelian vortices as instantons on noncommutative discrete space

被引:2
|
作者
Ikemori, Hitoshi [1 ]
Kitakado, Shinsaku [2 ]
Otsu, Hideharu [3 ]
Sato, Toshiro [4 ]
机构
[1] Shiga Univ Med Sci, Fac Econ, Shiga 5228522, Japan
[2] Meijo Univ, Fac Sci & Technol, Dept Phys, Tempaku Ku, Nagoya, Aichi 4688502, Japan
[3] Aichi Univ, Fac Econ, Aichi 4418522, Japan
[4] Mie Chukyo Univ, Fac Law & Econ, Matsusaka, Mie 5158511, Japan
来源
关键词
Solitons Monopoles and Instantons; Non-Commutative Geometry; WEINBERG-SALAM THEORY; CONSTRUCTION; GEOMETRY; FIELDS;
D O I
10.1088/1126-6708/2009/02/004
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
There seems to be close relationship between the moduli space of vortices and the moduli space of instantons, which is not yet clearly understood from a standpoint of the field theory. We clarify the reasons why many similarities are found in the methods for constructing the moduli of instanton and vortex, viewed in the light of the notion of the self-duality. We show that the non-Abelian vortex is nothing but the instanton in R-2 x Z(2) from a viewpoint of the noncommutative differential geometry and the gauge theory in discrete space. The action for pure Yang-Mills theory in R-2 x Z(2) is equivalent to that forYang-Mills-Higgs theory in R-2.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Noncommutative Instantons Revisited
    Nikita A. Nekrasov
    Communications in Mathematical Physics, 2003, 241 : 143 - 160
  • [42] Noncommutative Families of Instantons
    Landi, Giovanni
    Pagani, Chiara
    Reina, Cesare
    van Suijlekom, Walter D.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [43] Non-Abelian monopoles and vortices
    Bradlow, SB
    GarciaPrada, O
    GEOMETRY AND PHYSICS, 1997, 184 : 567 - 589
  • [44] Non-Abelian vortices with a twist
    Forgacs, Peter
    Lukacs, Arpad
    Schaposnik, Fidel A.
    PHYSICAL REVIEW D, 2015, 91 (12):
  • [45] Gauge Theory on a Discrete Noncommutative Space
    Liangzhong Hu
    Adonai S. Sant'Anna
    International Journal of Theoretical Physics, 2003, 42 : 635 - 647
  • [46] Gauge theory on a discrete noncommutative space
    Hu, LZ
    Sant'Anna, AS
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (04) : 635 - 647
  • [47] Nonlinear/noncommutative non-Abelian monopoles
    Hashimoto, K
    PHYSICAL REVIEW D, 2002, 65 (06)
  • [48] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [49] Noncommutative descent and non-Abelian cohomology
    Nuss, P
    K-THEORY, 1997, 12 (01): : 23 - 74
  • [50] Noncommutative differential calculus on discrete Abelian groups and its applications
    Guo, HY
    Wu, K
    Zhang, W
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2000, 34 (02) : 245 - 250