Non abelian vortices as instantons on noncommutative discrete space

被引:2
|
作者
Ikemori, Hitoshi [1 ]
Kitakado, Shinsaku [2 ]
Otsu, Hideharu [3 ]
Sato, Toshiro [4 ]
机构
[1] Shiga Univ Med Sci, Fac Econ, Shiga 5228522, Japan
[2] Meijo Univ, Fac Sci & Technol, Dept Phys, Tempaku Ku, Nagoya, Aichi 4688502, Japan
[3] Aichi Univ, Fac Econ, Aichi 4418522, Japan
[4] Mie Chukyo Univ, Fac Law & Econ, Matsusaka, Mie 5158511, Japan
来源
关键词
Solitons Monopoles and Instantons; Non-Commutative Geometry; WEINBERG-SALAM THEORY; CONSTRUCTION; GEOMETRY; FIELDS;
D O I
10.1088/1126-6708/2009/02/004
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
There seems to be close relationship between the moduli space of vortices and the moduli space of instantons, which is not yet clearly understood from a standpoint of the field theory. We clarify the reasons why many similarities are found in the methods for constructing the moduli of instanton and vortex, viewed in the light of the notion of the self-duality. We show that the non-Abelian vortex is nothing but the instanton in R-2 x Z(2) from a viewpoint of the noncommutative differential geometry and the gauge theory in discrete space. The action for pure Yang-Mills theory in R-2 x Z(2) is equivalent to that forYang-Mills-Higgs theory in R-2.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] VORTICES AS INSTANTONS IN NONCOMMUTATIVE DISCRETE SPACE: USE OF Z2 COORDINATES
    Otsu, Hideharu
    Sato, Toshiro
    Ikemori, Hitoshi
    Kitakado, Shinsaku
    MODERN PHYSICS LETTERS A, 2010, 25 (25) : 2189 - 2206
  • [2] Quiver gauge theory of non-Abelian vortices and noncommutative instantons in higher dimensions
    Popov, AD
    Szabo, RJ
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (01)
  • [3] Some noncommutative multi-instantons from vortices in curved space
    Correa, DH
    Moreno, EF
    Schaposnik, FA
    PHYSICS LETTERS B, 2002, 543 (3-4) : 235 - 240
  • [4] Instantons and vortices on noncommutative toric varieties
    Cirio, Lucio S.
    Landi, Giovanni
    Szabo, Richard J.
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (09)
  • [5] Moduli space of non-Abelian vortices
    Eto, M
    Isozumi, Y
    Nitta, M
    Ohashi, K
    Sakai, N
    PHYSICAL REVIEW LETTERS, 2006, 96 (16)
  • [6] Noncommutative vortices and instantons from generalized Bose operators
    Nirmalendu Acharyya
    Nitin Chandra
    Sachindeo Vaidya
    Journal of High Energy Physics, 2011
  • [7] Noncommutative vortices and instantons from generalized Bose operators
    Acharyya, Nirmalendu
    Chandra, Nitin
    Vaidya, Sachindeo
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12):
  • [8] Non-Abelian Vortices, Super Yang–Mills Theory and Spin(7)-Instantons
    Alexander D. Popov
    Letters in Mathematical Physics, 2010, 92 : 253 - 268
  • [9] The moduli space of noncommutative vortices
    Tong, D
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (08) : 3509 - 3516
  • [10] Non-Abelian Vortices, Super Yang-Mills Theory and Spin(7)-Instantons
    Popov, Alexander D.
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 92 (03) : 253 - 268