Non abelian vortices as instantons on noncommutative discrete space

被引:2
|
作者
Ikemori, Hitoshi [1 ]
Kitakado, Shinsaku [2 ]
Otsu, Hideharu [3 ]
Sato, Toshiro [4 ]
机构
[1] Shiga Univ Med Sci, Fac Econ, Shiga 5228522, Japan
[2] Meijo Univ, Fac Sci & Technol, Dept Phys, Tempaku Ku, Nagoya, Aichi 4688502, Japan
[3] Aichi Univ, Fac Econ, Aichi 4418522, Japan
[4] Mie Chukyo Univ, Fac Law & Econ, Matsusaka, Mie 5158511, Japan
来源
关键词
Solitons Monopoles and Instantons; Non-Commutative Geometry; WEINBERG-SALAM THEORY; CONSTRUCTION; GEOMETRY; FIELDS;
D O I
10.1088/1126-6708/2009/02/004
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
There seems to be close relationship between the moduli space of vortices and the moduli space of instantons, which is not yet clearly understood from a standpoint of the field theory. We clarify the reasons why many similarities are found in the methods for constructing the moduli of instanton and vortex, viewed in the light of the notion of the self-duality. We show that the non-Abelian vortex is nothing but the instanton in R-2 x Z(2) from a viewpoint of the noncommutative differential geometry and the gauge theory in discrete space. The action for pure Yang-Mills theory in R-2 x Z(2) is equivalent to that forYang-Mills-Higgs theory in R-2.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Non-abelian vortices on the torus
    Sergio Lozano, Gustavo
    Marques, Diego
    Arturo Schaposnik, Fidel
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (09):
  • [32] Non-Abelian global vortices
    Eto, Minoru
    Nakano, Eiji
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2009, 821 (1-2) : 129 - 150
  • [33] Dynamics of non-Abelian vortices
    Eto, Minoru
    Fujimori, Toshiaki
    Nitta, Muneto
    Ohashi, Keisuke
    Sakai, Norisuke
    PHYSICAL REVIEW D, 2011, 84 (12):
  • [34] Noncommutative Instantons Revisited
    Hamanaka, Masashi
    Nakatsu, Toshio
    XXTH INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-20), 2013, 411
  • [35] Noncommutative spheres and instantons
    Landi, G
    QUANTUM FIELD THEORY AND NONCOMMUTATIVE GEOMETRY, 2005, 662 : 3 - 56
  • [36] Notes on noncommutative instantons
    Chu, CS
    Khoze, VV
    Travaglini, G
    NUCLEAR PHYSICS B, 2002, 621 (1-2) : 101 - 130
  • [37] Noncommutative deformation of instantons
    Maeda, Yoshiaki
    Sako, Akifumi
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (12) : 1784 - 1791
  • [38] Noncommutative instantons revisited
    Nekrasov, NA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 241 (01) : 143 - 160
  • [39] Examples of noncommutative instantons
    Landi, Giovanni
    GEOMETRIC AND TOPOLOGICAL METHODS FOR QUANTUM FIELD THEORY, 2007, 434 : 39 - 72
  • [40] Dyonic non-Abelian vortices
    Collie, Benjamin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (08)