BASELINE GENETIC PROGRAMMING: SYMBOLIC REGRESSION ON BENCHMARKS FOR SENSORY EVALUATION MODELING

被引:0
|
作者
Noel, Pierre-Luc [1 ]
Veeramachaneni, Kalyan [2 ]
O'Reilly, Una-May [2 ,3 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[3] MIT, Evolutionary Design & Optimizat Grp, Cambridge, MA 02139 USA
关键词
symbolic regression; benchmarks; sensory evaluation; hedonic modeling;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce hedonic, modeling benchmarks for the field of sensory science evaluation. Our benchmark framework provides a general means of defining a response surface which we call a "sensory map". A sensory map is described by a mathematical expression which rationalizes domain specific knowledge of the explanatory variables and their individual or higher order contribution to hedonic, response. The benchmark framework supports the sensory map's socalled ground truth to be controllably distorted to mimic the human and protocol factors that obscure it. To provide a baseline for future algorithm comparison, we evaluate a public research release of genetic programming symbolic regression algorithm on a sampling of the framework's benchmarks.
引用
收藏
页码:173 / 194
页数:22
相关论文
共 50 条
  • [31] An efficient memetic genetic programming framework for symbolic regression
    Cheng, Tiantian
    Zhong, Jinghui
    MEMETIC COMPUTING, 2020, 12 (04) : 299 - 315
  • [32] Semantic schema based genetic programming for symbolic regression
    Zojaji, Zahra
    Ebadzadeh, Mohammad Mehdi
    Nasiri, Hamid
    APPLIED SOFT COMPUTING, 2022, 122
  • [33] An efficient memetic genetic programming framework for symbolic regression
    Tiantian Cheng
    Jinghui Zhong
    Memetic Computing, 2020, 12 : 299 - 315
  • [34] Further Investigation on Genetic Programming with Transfer Learning for Symbolic Regression
    Haslam, Edward
    Xue, Bing
    Zhang, Mengjie
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3598 - 3605
  • [35] Combining Conformal Prediction and Genetic Programming for Symbolic Interval Regression
    Pham Thi Thuong
    Nguyen Xuan Hoai
    Yao, Xin
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 1001 - 1008
  • [36] Genetic Programming for Symbolic Regression: A Study on Fish Weight Prediction
    Yang, Yunhan
    Xue, Bing
    Jesson, Linley
    Zhang, Mengjie
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 588 - 595
  • [37] Symbolic regression on noisy data with genetic and gene expression programming
    Bautu, E
    Bautu, A
    Luchian, H
    Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Proceedings, 2005, : 321 - 324
  • [38] Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression
    Chang, Chi-Hsien
    Chiang, Tu-Chin
    Hsu, Tzu-Hao
    Chuang, Ting-Shuo
    Fang, Wen-Zhong
    Yu, Tian-Li
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 543 - 546
  • [39] Symbolic regression of crop pest forecasting using genetic programming
    Alhadidi, Basim
    Al-Afeef, Alaa
    Al-Hiary, Heba
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 : 1332 - 1342
  • [40] Instance based Transfer Learning for Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 3006 - 3013