Echo State Networks;
Physics-Informed Neural Networks;
Chaotic dynamical systems;
DEEP NEURAL-NETWORKS;
D O I:
10.1007/978-3-030-22747-0_15
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
We propose a physics-informed Echo State Network (ESN) to predict the evolution of chaotic systems. Compared to conventional ESNs, the physics-informed ESNs are trained to solve supervised learning tasks while ensuring that their predictions do not violate physical laws. This is achieved by introducing an additional loss function during the training of the ESNs, which penalizes non-physical predictions without the need of any additional training data. This approach is demonstrated on a chaotic Lorenz system, where the physics-informed ESNs improve the predictability horizon by about two Lyapunov times as compared to conventional ESNs. The proposed framework shows the potential of using machine learning combined with prior physical knowledge to improve the time-accurate prediction of chaotic dynamical systems.
机构:
Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, ChileInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
Rojas, Sergio
Maczuga, Pawel
论文数: 0引用数: 0
h-index: 0
机构:
AGH University of Krakow, PolandInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
Maczuga, Pawel
论文数: 引用数:
h-index:
机构:
Muñoz-Matute, Judit
论文数: 引用数:
h-index:
机构:
Pardo, David
Paszyński, Maciej
论文数: 0引用数: 0
h-index: 0
机构:
AGH University of Krakow, PolandInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile