Physics-Informed Neural Networks for Quantum Control

被引:1
|
作者
Norambuena, Ariel [1 ]
Mattheakis, Marios [2 ]
Gonzalez, Francisco J. [3 ]
Coto, Raul [3 ,4 ]
机构
[1] Univ Mayor, Ctr Genom & Bioinformat, Camino Piramide 5750, Santiago, Huechuraba, Chile
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Univ Mayor, Fac Estudios Interdisciplinarios, Ctr Invest DAiTA Lab, Santiago 7560908, Chile
[4] Florida Int Univ, Dept Phys, Miami, FL 33199 USA
关键词
ADIABATIC POPULATION TRANSFER; SYSTEMS; DYNAMICS; STATES; ATOMS;
D O I
10.1103/PhysRevLett.132.010801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum control is a ubiquitous research field that has enabled physicists to delve into the dynamics and features of quantum systems, delivering powerful applications for various atomic, optical, mechanical, and solid-state systems. In recent years, traditional control techniques based on optimization processes have been translated into efficient artificial intelligence algorithms. Here, we introduce a computational method for optimal quantum control problems via physics -informed neural networks (PINNs). We apply our methodology to open quantum systems by efficiently solving the state -to -state transfer problem with high probabilities, short -time evolution, and using low -energy consumption controls. Furthermore, we illustrate the flexibility of PINNs to solve the same problem under changes in physical parameters and initial conditions, showing advantages in comparison with standard control techniques.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    [J]. ENTROPY, 2024, 26 (08)
  • [2] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [3] General implementation of quantum physics-informed neural networks
    Vadyala, Shashank Reddy
    Betgeri, Sai Nethra
    [J]. ARRAY, 2023, 18
  • [4] Physics-Informed Neural Networks for Quantum Eigenvalue Problems
    Jin, Henry
    Mattheakis, Marios
    Protopapas, Pavlos
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [5] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    [J]. HELIYON, 2023, 9 (08)
  • [6] Physics-informed neural networks for an optimal counterdiabatic quantum computation
    Ferrer-Sanchez, Antonio
    Flores-Garrigos, Carlos
    Hernani-Morales, Carlos
    Orquin-Marques, Jose J.
    Hegade, Narendra N.
    Cadavid, Alejandro Gomez
    Montalban, Iraitz
    Solano, Enrique
    Vives-Gilabert, Yolanda
    Martin-Guerrero, Jose D.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [7] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Optimal control of PDEs using physics-informed neural networks
    Mowlavi, Saviz
    Nabi, Saleh
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [9] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [10] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705