Physics-Informed Neural Networks for shell structures

被引:23
|
作者
Bastek, Jan-Hendrik [1 ]
Kochmann, Dennis M. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Mech & Mat Lab, CH-8092 Zurich, Switzerland
关键词
Structural mechanics; Machine learning; Shell theory; Finite Element Method; LOCKING;
D O I
10.1016/j.euromechsol.2022.104849
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The numerical modeling of thin shell structures is a challenge, which has been met by a variety of finite element method (FEM) and other formulations-many of which give rise to new challenges, from complex implementations to artificial locking. As a potential alternative, we use machine learning and present a Physics -Informed Neural Network (PINN) to predict the small-strain response of arbitrarily curved shells. To this end, the shell midsurface is described by a chart, from which the mechanical fields are derived in a curvilinear coordinate frame by adopting Naghdi's shell theory. Unlike in typical PINN applications, the corresponding strong or weak form must therefore be solved in a non-Euclidean domain. We investigate the performance of the proposed PINN in three distinct scenarios, including the well-known Scordelis-Lo roof setting widely used to test FEM shell elements against locking. Results show that the PINN can accurately identify the solution field in all three benchmarks if the equations are presented in their weak form, while it may fail to do so when using the strong form. In the small-thickness limit, where classical methods are susceptible to locking, training time notably increases as the differences in scaling of the membrane, shear, and bending energies lead to adverse numerical stiffness in the gradient flow dynamics. Nevertheless, the PINN can accurately match the ground truth and performs well in the Scordelis-Lo roof benchmark, highlighting its potential for a drastically simplified alternative to designing locking-free shell FEM formulations.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    [J]. HELIYON, 2023, 9 (08)
  • [2] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    [J]. ENTROPY, 2024, 26 (08)
  • [4] Damage identification for plate structures using physics-informed neural networks
    Zhou, Wei
    Xu, Y. F.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 209
  • [5] Modeling Power-Bus Structures with Physics-Informed Neural Networks
    Fujita, Kazuhiro
    [J]. PROCEEDINGS OF THE 2024 IEEE JOINT INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL & POWER INTEGRITY: EMC JAPAN/ASIAPACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, EMC JAPAN/APEMC OKINAWA 2024, 2024, : 552 - 555
  • [6] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [7] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [8] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    [J]. ADVANCED PHOTONICS, 2022, 4 (06):
  • [9] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    [J]. ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865
  • [10] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8