Modeling Power-Bus Structures with Physics-Informed Neural Networks

被引:0
|
作者
Fujita, Kazuhiro [1 ]
机构
[1] Saitama Inst Technol, Dept Informat Syst, Fukaya, Saitama, Japan
关键词
deep learning; artificial neural network; power-bus structure; partial differential equation; electromagnetic field;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents electromagnetic modeling of power-bus structures with physics-informed neural networks. A deep neural network (DNN) is used as a solution surrogate to the Helmholtz equation describing a physical law of voltage distributions in the parallel-plate structures. Its equation is directly embedded in the loss function of the DNN to be trained. The developed method can be regarded to be data-free and mesh-free. It is applied to the analysis of input impedance of a circular power-bus structure with dielectric and conductor losses. The predicted result is verified in comparison with the theoretical one.
引用
收藏
页码:552 / 555
页数:4
相关论文
共 50 条
  • [1] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [2] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [3] Physics-Informed Neural Networks for Modeling Cellulose Degradation in Power Transformers
    Bragone, Federica
    Oueslati, Khaoula
    Laneryd, Tor
    Luvisotto, Michele
    Morozovska, Kateryna
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1365 - 1372
  • [4] Multifidelity modeling for Physics-Informed Neural Networks (PINNs)
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [5] Physics-informed neural networks for modeling astrophysical shocks
    Moschou, S. P.
    Hicks, E.
    Parekh, R. Y.
    Mathew, D.
    Majumdar, S.
    Vlahakis, N.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [6] Physics-Informed Neural Networks with skip connections for modeling and
    Kittelsen, Jonas Ekeland
    Antonelo, Eric Aislan
    Camponogara, Eduardo
    Imsland, Lars Struen
    APPLIED SOFT COMPUTING, 2024, 158
  • [7] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [8] Physics-informed neural networks for the Reynolds equation with cavitation modeling
    Rom, Michael
    TRIBOLOGY INTERNATIONAL, 2023, 179
  • [9] Error homogenization in physics-informed neural networks for modeling in manufacturing
    Cooper, Clayton
    Zhang, Jianjing
    Gao, Robert X.
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 71 : 298 - 308
  • [10] Physics-Informed Neural Networks for AC Optimal Power Flow
    Nellikkath, Rahul
    Chatzivasileiadis, Spyros
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 212