A Study of Pure Random Walk Algorithms on Constraint Satisfaction Problems with Growing Domains

被引:0
|
作者
Xu, Wei [1 ]
Gong, Fuzhou [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing, Peoples R China
来源
FRONTIERS IN ALGORITHMICS, FAW 2014 | 2014年 / 8497卷
关键词
constraint satisfaction problems; Model RB; random walk; local search algorithms; PHASE-TRANSITION; LOCAL SEARCH;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The performances of two types of pure random walk (PRW) algorithms for a model of constraint satisfaction problems with growing domains (called Model RB) are investigated. Threshold phenomenons appear for both algorithms. In particular, when the constraint density r is smaller than a threshold value r(d), PRW algorithms can solve instances of Model RB efficiently, but when r is bigger than the rd, they fail. Using a physical method, we find out the threshold values for both algorithms. When the number of variables N is large, the threshold values tend to zero, so generally speaking PRW does not work on Model RB.
引用
收藏
页码:276 / 287
页数:12
相关论文
共 50 条
  • [41] Threshold properties of random boolean constraint satisfaction problems
    Istrate, G
    DISCRETE APPLIED MATHEMATICS, 2005, 153 (1-3) : 141 - 152
  • [42] Random subcubes as a Toy model for constraint satisfaction problems
    Mora, Thierry
    Zdeborova, Lenka
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (06) : 1121 - 1138
  • [43] The Asymptotics of the Clustering Transition for Random Constraint Satisfaction Problems
    Budzynski, Louise
    Semerjian, Guilhem
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (05) : 1490 - 1522
  • [44] Exact phase transitions in random constraint satisfaction problems
    Xu, K
    Li, W
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2000, 12 : 93 - 103
  • [45] An Average Analysis of Backtracking on Random Constraint Satisfaction Problems
    Ke Xu
    Wei Li
    Annals of Mathematics and Artificial Intelligence, 2001, 33 : 21 - 37
  • [46] Exact Phase Transitions in Random Constraint Satisfaction Problems
    Xu, Ke
    Li, Wei
    Journal of Artificial Intelligence Research, 2001, 12 (00):
  • [47] Random Subcubes as a Toy Model for Constraint Satisfaction Problems
    Thierry Mora
    Lenka Zdeborová
    Journal of Statistical Physics, 2008, 131 : 1121 - 1138
  • [48] Frozen variables in random boolean constraint satisfaction problems
    Molloy, Michael
    Restrepo, Ricardo
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1306 - 1318
  • [49] A general model and thresholds for random constraint satisfaction problems
    Fan, Yun
    Shen, Jing
    Xu, Ke
    ARTIFICIAL INTELLIGENCE, 2012, 193 : 1 - 17
  • [50] Hiding Quiet Solutions in Random Constraint Satisfaction Problems
    Krzakala, Florent
    Zdeborova, Lenka
    PHYSICAL REVIEW LETTERS, 2009, 102 (23)