Threshold properties of random boolean constraint satisfaction problems

被引:8
|
作者
Istrate, G [1 ]
机构
[1] Los Alamos Natl Lab, CCS Basic & Appl Simulat Sci 5, Los Alamos, NM 87545 USA
关键词
random constraint satisfaction problems; sharp thresholds;
D O I
10.1016/j.dam.2005.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study threshold properties of random constraint satisfaction problems under a probabilistic model due to Molloy [Models for random constraint satisfaction problems, in: Proceedings of the 32nd ACM Symposium on Theory of Computing, 2002]. We give a sufficient condition for the existence of a sharp threshold. In the boolean case, it gives an independent proof for the more difficult half of a classification result conjectured by Creignou and Daude [Generalized satisfiability problems: minimal elements and phase transitions. Theor. Comput. Sci. 302(1-3) (2003) 417-430], proved in a restricted case by the same authors [Combinatorial sharpness criterion and phase transition classification for random CSPs, Inform. Comput. 190(2) (2004) 220-238], and established by them [Coarse and sharp thresholds for random generalized satisfiability problems, in: M. Drmota, P. Flajolet, D. Gardy, B. Gittenberger (Eds.), Mathematics and Computer Science III: Algorithms, Trees, Combinatorics and Probabilities, Birkhauser, Basel, September 2004, pp. 507-517] while this paper was in the refereeing process. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 50 条
  • [1] Frozen variables in random boolean constraint satisfaction problems
    Molloy, Michael
    Restrepo, Ricardo
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1306 - 1318
  • [2] Satisfying assignments of random boolean constraint satisfaction problems: Clusters and overlaps
    Istrate, Gabriel
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2007, 13 (11) : 1655 - 1670
  • [3] Nonuniform Boolean Constraint Satisfaction Problems with Cardinality Constraint
    Creignou, Nadia
    Schnoor, Henning
    Schnoor, Ilka
    [J]. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2010, 11 (04) : 1 - 32
  • [4] Random Constraint Satisfaction Problems
    Coja-Oghlan, Amin
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2009, (09): : 32 - 37
  • [5] Boolean constraint satisfaction problems for reaction networks
    Seganti, A.
    De Martino, A.
    Ricci-Tersenghi, F.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [6] A sharp threshold for a random constraint satisfaction problem
    Flaxman, AD
    [J]. DISCRETE MATHEMATICS, 2004, 285 (1-3) : 301 - 305
  • [7] Non-uniform Boolean Constraint Satisfaction Problems with Cardinality Constraint
    Creignou, Nadia
    Schnoor, Henning
    Schnoor, Ilka
    [J]. COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2008, 5213 : 109 - +
  • [8] Implicit random constraint satisfaction problems
    Lecoutre, C
    Boussemart, F
    Hemery, F
    [J]. 15TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, : 482 - 486
  • [9] Models for random constraint satisfaction problems
    Molloy, M
    [J]. SIAM JOURNAL ON COMPUTING, 2003, 32 (04) : 935 - 949
  • [10] Optimization, Randomized Approximability, and Boolean Constraint Satisfaction Problems
    Yamakami, Tomoyuki
    [J]. ALGORITHMS AND COMPUTATION, 2011, 7074 : 454 - 463