Boolean constraint satisfaction problems for reaction networks

被引:1
|
作者
Seganti, A. [1 ]
De Martino, A. [1 ,2 ,3 ]
Ricci-Tersenghi, F. [1 ,2 ,4 ]
机构
[1] Univ Roma La Sapienza, Dept Fis, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, Dept Fis, UOS Roma, IPCF CNR, I-00185 Rome, Italy
[3] Ist Italiano Tecnol, Ctr Life Nano Sci Sapienza, I-00161 Rome, Italy
[4] Univ Roma La Sapienza, Dept Fis, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy
关键词
cavity and replica method; message-passing algorithms; random graphs; networks; metabolic networks; METABOLIC NETWORKS; ESCHERICHIA-COLI; ORGANIZATION; ROBUSTNESS; EVOLUTION; GROWTH; MOTIFS; MODEL;
D O I
10.1088/1742-5468/2013/09/P09009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We define and study a class of (random) Boolean constraint satisfaction problems representing minimal feasibility constraints for networks of chemical reactions. The constraints we consider encode, respectively, for hard mass-balance conditions (where the consumption and production fluxes of each chemical species are matched) and for soft mass-balance conditions (where a net production of compounds is in principle allowed). We solve these constraint satisfaction problems under the Bethe approximation and derive the corresponding belief propagation equations, which involve eight different messages. The statistical properties of ensembles of random problems are studied via the population dynamics methods. By varying a chemical potential attached to the activity of reactions, we find first-order transitions and strong hysteresis, suggesting a non-trivial structure in the space of feasible solutions.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Nonuniform Boolean Constraint Satisfaction Problems with Cardinality Constraint
    Creignou, Nadia
    Schnoor, Henning
    Schnoor, Ilka
    [J]. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2010, 11 (04) : 1 - 32
  • [2] Non-uniform Boolean Constraint Satisfaction Problems with Cardinality Constraint
    Creignou, Nadia
    Schnoor, Henning
    Schnoor, Ilka
    [J]. COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2008, 5213 : 109 - +
  • [3] Optimization, Randomized Approximability, and Boolean Constraint Satisfaction Problems
    Yamakami, Tomoyuki
    [J]. ALGORITHMS AND COMPUTATION, 2011, 7074 : 454 - 463
  • [4] Frozen variables in random boolean constraint satisfaction problems
    Molloy, Michael
    Restrepo, Ricardo
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1306 - 1318
  • [5] The complexity of Boolean constraint satisfaction local search problems
    Chapdelaine, P
    Creignou, N
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2005, 43 (1-4) : 51 - 63
  • [6] Threshold properties of random boolean constraint satisfaction problems
    Istrate, G
    [J]. DISCRETE APPLIED MATHEMATICS, 2005, 153 (1-3) : 141 - 152
  • [7] The complexity of Boolean constraint satisfaction local search problems
    Philippe Chapdelaine
    Nadia Creignou
    [J]. Annals of Mathematics and Artificial Intelligence, 2005, 43 : 51 - 63
  • [8] Searching for feasible stationary states in reaction networks by solving a Boolean constraint satisfaction problem
    Seganti, A.
    De Martino, A.
    Ricci-Tersenghi, F.
    [J]. PHYSICAL REVIEW E, 2014, 89 (02):
  • [9] Boolean approach for representing and solving constraint-satisfaction problems
    Bennaceur, H
    [J]. TOPICS IN ARTIFICIAL INTELLIGENCE, 1995, 992 : 163 - 174
  • [10] Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case
    Barto, Libor
    Battistelli, Diego
    Berg, Kevin M.
    [J]. 38TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2021), 2021, 187