A Study of Pure Random Walk Algorithms on Constraint Satisfaction Problems with Growing Domains

被引:0
|
作者
Xu, Wei [1 ]
Gong, Fuzhou [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing, Peoples R China
来源
FRONTIERS IN ALGORITHMICS, FAW 2014 | 2014年 / 8497卷
关键词
constraint satisfaction problems; Model RB; random walk; local search algorithms; PHASE-TRANSITION; LOCAL SEARCH;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The performances of two types of pure random walk (PRW) algorithms for a model of constraint satisfaction problems with growing domains (called Model RB) are investigated. Threshold phenomenons appear for both algorithms. In particular, when the constraint density r is smaller than a threshold value r(d), PRW algorithms can solve instances of Model RB efficiently, but when r is bigger than the rd, they fail. Using a physical method, we find out the threshold values for both algorithms. When the number of variables N is large, the threshold values tend to zero, so generally speaking PRW does not work on Model RB.
引用
收藏
页码:276 / 287
页数:12
相关论文
共 50 条
  • [31] EXPERIMENTAL EVALUATION OF PREPROCESSING ALGORITHMS FOR CONSTRAINT SATISFACTION PROBLEMS
    DECHTER, R
    MEIRI, I
    ARTIFICIAL INTELLIGENCE, 1994, 68 (02) : 211 - 241
  • [32] Rewriting numeric constraint satisfaction problems for consistency algorithms
    Lottaz, C
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING-CP'99, 1999, 1713 : 486 - 487
  • [33] Generic hybrid algorithms for the resolution of constraint satisfaction problems
    Deleau, H
    Hao, JK
    Saubion, F
    RAIRO-OPERATIONS RESEARCH, 2005, 39 (02) : 87 - 103
  • [34] On solving fuzzy constraint satisfaction problems with genetic algorithms
    Kowalczyk, R
    1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, : 758 - 762
  • [35] Random walk algorithms for solving nonlinear chemotaxis problems
    Sabelfeld, Karl K.
    Bukhasheev, Oleg
    MONTE CARLO METHODS AND APPLICATIONS, 2024, 30 (03): : 235 - 248
  • [36] Comparing evolutionary algorithms on binary constraint satisfaction problems
    Craenen, BGW
    Eiben, AE
    van Hemert, JI
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (05) : 424 - 444
  • [37] Improved algorithms for counting solutions in constraint satisfaction problems
    Angelsmark, O
    Jonsson, P
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2003, PROCEEDINGS, 2003, 2833 : 81 - 95
  • [38] The Asymptotics of the Clustering Transition for Random Constraint Satisfaction Problems
    Louise Budzynski
    Guilhem Semerjian
    Journal of Statistical Physics, 2020, 181 : 1490 - 1522
  • [39] The replica symmetric phase of random constraint satisfaction problems
    Coja-Oghlan, Amin
    Kapetanopoulos, Tobias
    Mueller, Noela
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (03): : 346 - 422
  • [40] Bounding the scaling window of random constraint satisfaction problems
    Shen, Jing
    Ren, Yaofeng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 786 - 801