DataMeadow: a visual canvas for analysis of large-scale multivariate data

被引:38
|
作者
Elmqvist, Niklas [1 ]
Stasko, John [2 ,3 ]
Tsigas, Philippas [4 ]
机构
[1] Univ Paris Sud, INRIA, LRI, F-91465 Orsay, France
[2] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, GVU Ctr, Atlanta, GA 30332 USA
[4] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
关键词
Multivariate data; Visual analytics; Parallel coordinates; Dynamic queries; Progressive analysis; Starplots;
D O I
10.1057/palgrave.ivs.9500170
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Supporting visual analytics of multiple large-scale multidimensional data sets requires a high degree of interactivity and user control beyond the conventional challenges of visualizing such data sets. We present the DataMeadow, a visual canvas providing rich interaction for constructing visual queries using graphical set representations called DataRoses. A DataRose is essentially a starplot of selected columns in a data set displayed as multivariate visualizations with dynamic query sliders integrated into each axis. The purpose of the DataMeadow is to allow users to create advanced visual queries by iteratively selecting and filtering into the multidimensional data. Furthermore, the canvas provides a clear history of the analysis that can be annotated to facilitate dissemination of analytical results to stakeholders. A powerful direct manipulation interface allows for selection, filtering, and creation of sets, subsets, and data dependencies. We have evaluated our system using a qualitative expert review involving two visualization researchers. Results from this review are favorable for the new method. Information Visualization (2008) 7, 18-33. doi: 10.1057/palgrave.ivs.9500170
引用
收藏
页码:18 / 33
页数:16
相关论文
共 50 条
  • [41] Visual Analytics to make sense of large-scale administrative and normative data
    Guarino, Alfonso
    Lettieri, Nicola
    Malandrino, Delfina
    Russo, Pietro
    Zaccagnino, Rocco
    2019 23RD INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): BIOMEDICAL VISUALIZATION AND GEOMETRIC MODELLING & IMAGING, 2019, : 133 - 138
  • [42] CytoGPS: A large-scale karyotype analysis of CML data
    Abrams, Zachary B.
    Li, Suli
    Zhang, Lin
    Coombes, Caitlin E.
    Payne, Philip R. O.
    Heerema, Nyla A.
    Abruzzo, Lynne, V
    Coombes, Kevin R.
    CANCER GENETICS, 2020, 248 : 34 - 38
  • [43] Deep learning for the large-scale cancer data analysis
    Tsuji, Shingo
    Aburatani, Hiroyuki
    CANCER RESEARCH, 2015, 75 (22)
  • [44] A Visual Backchannel for Large-Scale Events
    Doerk, Marian
    Gruen, Daniel
    Williamson, Carey
    Carpendale, Sheelagh
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 1129 - 1138
  • [45] Large-Scale Visual Font Recognition
    Chen, Guang
    Yang, Jianchao
    Jin, Hailin
    Brandt, Jonathan
    Shechtman, Eli
    Agarwala, Aseem
    Han, Tony X.
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3598 - 3605
  • [46] Large-Scale Visual Relationship Understanding
    Zhang, Ji
    Kalantidis, Yannis
    Rohrbach, Marcus
    Paluri, Manohar
    Elgammal, Ahmed
    Elhoseiny, Mohamed
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 9185 - 9194
  • [47] Large-scale data analysis using the Wigner function
    Earnshaw, R. A.
    Lei, C.
    Li, J.
    Mugassabi, S.
    Vourdas, A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (07) : 2401 - 2407
  • [48] Large-Scale Data Analysis Using Heuristic Methods
    Dzemyda, Gintautas
    Sakalauskas, Leonidas
    INFORMATICA, 2011, 22 (01) : 1 - 10
  • [49] Large-Scale Visual Speech Recognition
    Shillingford, Brendan
    Assael, Yannis
    Hoffman, Matthew W.
    Paine, Thomas
    Hughes, Cian
    Prabhu, Utsav
    Liao, Hank
    Sak, Hasim
    Rao, Kanishka
    Bennett, Lorrayne
    Mulville, Marie
    Denil, Misha
    Coppin, Ben
    Laurie, Ben
    Senior, Andrew
    de Freitas, Nando
    INTERSPEECH 2019, 2019, : 4135 - 4139
  • [50] Computational solutions to large-scale data management and analysis
    Schadt, Eric E.
    Linderman, Michael D.
    Sorenson, Jon
    Lee, Lawrence
    Nolan, Garry P.
    NATURE REVIEWS GENETICS, 2010, 11 (09) : 647 - 657