DataMeadow: a visual canvas for analysis of large-scale multivariate data

被引:38
|
作者
Elmqvist, Niklas [1 ]
Stasko, John [2 ,3 ]
Tsigas, Philippas [4 ]
机构
[1] Univ Paris Sud, INRIA, LRI, F-91465 Orsay, France
[2] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, GVU Ctr, Atlanta, GA 30332 USA
[4] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
关键词
Multivariate data; Visual analytics; Parallel coordinates; Dynamic queries; Progressive analysis; Starplots;
D O I
10.1057/palgrave.ivs.9500170
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Supporting visual analytics of multiple large-scale multidimensional data sets requires a high degree of interactivity and user control beyond the conventional challenges of visualizing such data sets. We present the DataMeadow, a visual canvas providing rich interaction for constructing visual queries using graphical set representations called DataRoses. A DataRose is essentially a starplot of selected columns in a data set displayed as multivariate visualizations with dynamic query sliders integrated into each axis. The purpose of the DataMeadow is to allow users to create advanced visual queries by iteratively selecting and filtering into the multidimensional data. Furthermore, the canvas provides a clear history of the analysis that can be annotated to facilitate dissemination of analytical results to stakeholders. A powerful direct manipulation interface allows for selection, filtering, and creation of sets, subsets, and data dependencies. We have evaluated our system using a qualitative expert review involving two visualization researchers. Results from this review are favorable for the new method. Information Visualization (2008) 7, 18-33. doi: 10.1057/palgrave.ivs.9500170
引用
收藏
页码:18 / 33
页数:16
相关论文
共 50 条
  • [11] Visual Cascade Analytics of Large-Scale Spatiotemporal Data
    Deng, Zikun
    Weng, Di
    Liang, Yuxuan
    Bao, Jie
    Zheng, Yu
    Schreck, Tobias
    Xu, Mingliang
    Wu, Yingcai
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (06) : 2486 - 2499
  • [12] Cistrome Explorer: an interactive visual analysis tool for large-scale epigenomic data
    L'Yi, Sehi
    Keller, Mark S.
    Dandawate, Ariaki
    Taing, Len
    Chen, Chen-Hao
    Brown, Myles
    Meyer, Clifford A.
    Gehlenborg, Nils
    BIOINFORMATICS, 2023, 39 (02)
  • [13] Visual Analytics of Large-Scale Climate Model Data
    Wong, Pak Chung
    Shen, Han-Wei
    Leung, Ruby
    Hagos, Samson
    Lee, Teng-Yok
    Tong, Xin
    Lu, Kewei
    2014 IEEE 4TH SYMPOSIUM ON LARGE DATA ANALYSIS AND VISUALIZATION (LDAV), 2014, : 85 - 92
  • [14] Large-Scale Web Data Analysis
    Leskovec, Jure
    IEEE INTELLIGENT SYSTEMS, 2011, 26 (01) : 11 - 11
  • [16] StratomeX: Visual Analysis of Large-Scale Heterogeneous Genomics Data for Cancer Subtype Characterization
    Lex, A.
    Streit, M.
    Schulz, H. -J.
    Partl, C.
    Schmalstieg, D.
    Park, P. J.
    Gehlenborg, N.
    COMPUTER GRAPHICS FORUM, 2012, 31 (03) : 1175 - 1184
  • [17] AVA: A Large-Scale Database for Aesthetic Visual Analysis
    Murray, Naila
    Marchesotti, Luca
    Perronnin, Florent
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 2408 - 2415
  • [18] Visual Analysis of Geometry Constrained Large-Scale Network
    Yao, Zhonghua
    Wu, Lingda
    Sun, Yang
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2018, E101B (04) : 1000 - 1009
  • [19] Visual Analysis of Large-scale LiDAR Point Clouds
    Luo, Wanbo
    Zhang, Hui
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 2487 - 2492
  • [20] Large-scale network monitoring for visual analysis of attacks
    Fischer, Fabian
    Mansmann, Florian
    Keim, Daniel A.
    Pietzko, Stephan
    Waldvogel, Marcel
    VISUALIZATION FOR COMPUTER SECURITY, PROCEEDINGS, 2008, 5210 : 111 - 118