DataMeadow: a visual canvas for analysis of large-scale multivariate data

被引:38
|
作者
Elmqvist, Niklas [1 ]
Stasko, John [2 ,3 ]
Tsigas, Philippas [4 ]
机构
[1] Univ Paris Sud, INRIA, LRI, F-91465 Orsay, France
[2] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, GVU Ctr, Atlanta, GA 30332 USA
[4] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
关键词
Multivariate data; Visual analytics; Parallel coordinates; Dynamic queries; Progressive analysis; Starplots;
D O I
10.1057/palgrave.ivs.9500170
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Supporting visual analytics of multiple large-scale multidimensional data sets requires a high degree of interactivity and user control beyond the conventional challenges of visualizing such data sets. We present the DataMeadow, a visual canvas providing rich interaction for constructing visual queries using graphical set representations called DataRoses. A DataRose is essentially a starplot of selected columns in a data set displayed as multivariate visualizations with dynamic query sliders integrated into each axis. The purpose of the DataMeadow is to allow users to create advanced visual queries by iteratively selecting and filtering into the multidimensional data. Furthermore, the canvas provides a clear history of the analysis that can be annotated to facilitate dissemination of analytical results to stakeholders. A powerful direct manipulation interface allows for selection, filtering, and creation of sets, subsets, and data dependencies. We have evaluated our system using a qualitative expert review involving two visualization researchers. Results from this review are favorable for the new method. Information Visualization (2008) 7, 18-33. doi: 10.1057/palgrave.ivs.9500170
引用
收藏
页码:18 / 33
页数:16
相关论文
共 50 条
  • [31] CoDDA: A Flexible Copula-based Distribution Driven Analysis Framework for Large-Scale Multivariate Data
    Hazarika, Subhashis
    Dutta, Soumya
    Shen, Han-Wei
    Chen, Jen-Ping
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (01) : 1214 - 1224
  • [32] Multivariate sensitivity analysis for a large-scale climate impact and adaptation model
    Oyebamiji, Oluwole Kehinde
    Nemeth, Christopher
    Harrison, Paula A.
    Dunford, Robert W.
    Cojocaru, George
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (03) : 770 - 808
  • [33] A novel approach to detect hot-spots in large-scale multivariate data
    Jianhua Wu
    Keith M Kendrick
    Jianfeng Feng
    BMC Bioinformatics, 8
  • [34] LARGE-SCALE INFERENCE OF MULTIVARIATE REGRESSION FOR HEAVY-TAILED AND ASYMMETRIC DATA
    Song, Youngseok
    Zhou, Wen
    Zhou, Wen-Xin
    STATISTICA SINICA, 2023, 33 (03) : 1831 - 1852
  • [35] A novel approach to detect hot-spots in large-scale multivariate data
    Wu, Jianhua
    Kendrick, Keith M.
    Feng, Jianfeng
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [36] Visual abstraction and exploration of large-scale geographical social media data
    Zhou, Zhiguang
    Zhang, Xinlong
    Guo, Zhiyong
    Liu, Yuhua
    NEUROCOMPUTING, 2020, 376 : 244 - 255
  • [37] BANKSAFE: Visual analytics for big data in large-scale computer networks
    Fischer, Fabian
    Fuchs, Johannes
    Mansmann, Florian
    Keim, Daniel A.
    INFORMATION VISUALIZATION, 2015, 14 (01) : 51 - 61
  • [38] Multivariate Hawkes Processes for Large-Scale Inference
    Lemonnier, Remi
    Scaman, Kevin
    Kalogeratos, Argyris
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2168 - 2174
  • [39] SwiftTuna: Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data
    Jo, Jaemin
    Kim, Wonjae
    Yoo, Seunghoon
    Kim, Bohyoung
    Seo, Jinwook
    2017 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2017, : 131 - 140
  • [40] A Novel Visual analytics Approach for Clustering Large-Scale Social Data
    Wang, Zhangye
    Zhou, Juanxia
    Chen, Wei
    Chen, Chang
    Liao, Jiyuan
    Maciejewski, Ross
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,