DataMeadow: a visual canvas for analysis of large-scale multivariate data

被引:38
|
作者
Elmqvist, Niklas [1 ]
Stasko, John [2 ,3 ]
Tsigas, Philippas [4 ]
机构
[1] Univ Paris Sud, INRIA, LRI, F-91465 Orsay, France
[2] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, GVU Ctr, Atlanta, GA 30332 USA
[4] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
关键词
Multivariate data; Visual analytics; Parallel coordinates; Dynamic queries; Progressive analysis; Starplots;
D O I
10.1057/palgrave.ivs.9500170
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Supporting visual analytics of multiple large-scale multidimensional data sets requires a high degree of interactivity and user control beyond the conventional challenges of visualizing such data sets. We present the DataMeadow, a visual canvas providing rich interaction for constructing visual queries using graphical set representations called DataRoses. A DataRose is essentially a starplot of selected columns in a data set displayed as multivariate visualizations with dynamic query sliders integrated into each axis. The purpose of the DataMeadow is to allow users to create advanced visual queries by iteratively selecting and filtering into the multidimensional data. Furthermore, the canvas provides a clear history of the analysis that can be annotated to facilitate dissemination of analytical results to stakeholders. A powerful direct manipulation interface allows for selection, filtering, and creation of sets, subsets, and data dependencies. We have evaluated our system using a qualitative expert review involving two visualization researchers. Results from this review are favorable for the new method. Information Visualization (2008) 7, 18-33. doi: 10.1057/palgrave.ivs.9500170
引用
收藏
页码:18 / 33
页数:16
相关论文
共 50 条
  • [1] DataMeadow: A visual canvas for analysis of large-scale multivariate data
    Elmqvist, Niklas
    Stasko, John
    Tsigas, Philippas
    VAST: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2007, PROCEEDINGS, 2007, : 187 - +
  • [2] Large-Scale Visual Data Analysis
    Johnson, Chris
    2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2012, : 1 - 1
  • [3] Panoramic View for Visual Analysis of Large-Scale Activity Data
    Misue, Kazuo
    Yazaki, Seiya
    BUSINESS PROCESS MANAGEMENT WORKSHOPS (BPM), 2013, 132 : 756 - 767
  • [4] Hierarchical visual data mining for large-scale data
    Matthew Ward
    Wei Peng
    Xiaoning Wang
    Computational Statistics, 2004, 19 : 147 - 158
  • [5] Hierarchical visual data mining for large-scale data
    Ward, M
    Peng, W
    Wang, XN
    COMPUTATIONAL STATISTICS, 2004, 19 (01) : 147 - 158
  • [6] Finding needles in large-scale multivariate data haystacks
    Ward, M
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2004, 24 (05) : 16 - 19
  • [7] Large-scale data visual analysis for numerical simulation of laser fusion
    Cao, X. (xiaolincao@iapcm.ac.cn), 1600, Institute of Computing Technology (26):
  • [8] Visual Analysis of Large-Scale Protein-Ligand Interaction Data
    Schatz, Karsten
    Franco-Moreno, Juan Jose
    Schafer, Marco
    Rose, Alexander S.
    Ferrario, Valerio
    Pleiss, Jurgen
    Vazquez, Pere-Pau
    Ertl, Thomas
    Krone, Michael
    COMPUTER GRAPHICS FORUM, 2021, 40 (06) : 394 - 408
  • [9] Semantic-Enhanced Visual Abstraction of Large-Scale Multivariate Graphs
    Liu Y.-H.
    Zhang R.-M.
    Zhang J.-Y.
    Gao F.
    Gao Y.
    Zhou Z.-G.
    Jisuanji Xuebao/Chinese Journal of Computers, 2020, 43 (01): : 136 - 150
  • [10] Visual analysis of large-scale network anomalies
    Liao, Q.
    Shi, L.
    Wang, C.
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2013, 57 (3-4)