The global analysis on the spectral collocation method for time fractional Schrodinger equation

被引:16
|
作者
Zheng, Minling [1 ]
Liu, Fawang [2 ]
Jin, Zhengmeng [3 ]
机构
[1] Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210000, Jiangsu, Peoples R China
基金
澳大利亚研究理事会;
关键词
Time fractional Schrodinger equation; Caputo fractional derivative; z-transform; Spectral collocation method; DISCONTINUOUS GALERKIN METHOD; FINITE-VOLUME METHOD; DIFFUSION EQUATION; NUMERICAL-SOLUTION; ELEMENT-METHOD; APPROXIMATION; STABILITY;
D O I
10.1016/j.amc.2019.124689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a spectral collocation method is proposed and analyzed for solving the time fractional Schrodinger equation. The space derivative is discretized using the collocation method and the time fractional derivative using Grunwald-Letnikov formulation. The stability and convergence of the full discretization scheme are analyzed based on the z-transform. The global behavior of the finite difference spectral collocation method is derived. Numerical examples show a good agreement with the theoretical analysis. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The unified method for conformable time fractional Schrodinger equation with perturbation terms
    Osman, M. S.
    Korkmaz, Alper
    Rezazadeh, Hadi
    Mirzazadeh, Mohammad
    Eslami, Mostafa
    Zhou, Qin
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (05) : 2500 - 2506
  • [42] An application of Chebyshev wavelet method for the nonlinear time fractional Schrodinger equation
    Esra Kose, G.
    Oruc, Omer
    Esen, Alaattin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) : 6635 - 6649
  • [43] FINITE ELEMENT METHOD FOR TIME-SPACE-FRACTIONAL SCHRODINGER EQUATION
    Zhu, Xiaogang
    Yuan, Zhanbin
    Wang, Jungang
    Nie, Yufeng
    Yang, Zongze
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [44] Finite difference method for time-space-fractional Schrodinger equation
    Liu, Qun
    Zeng, Fanhai
    Li, Changpin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (07) : 1439 - 1451
  • [45] THE GENERALIZED TIME FRACTIONAL GARDNER EQUATION VIA NUMERICAL MESHLESS COLLOCATION METHOD
    Mehnaz, Shakeel
    Khan, Muhammad Nawas
    Ahmad, Imtiaz
    Abdel-Khalek, Sayed
    Alghamdi, Ahmed Mohammed
    Inc, Mustafa
    THERMAL SCIENCE, 2022, 26 : 469 - 474
  • [46] THE GENERALIZED TIME FRACTIONAL GARDNER EQUATION VIA NUMERICAL MESHLESS COLLOCATION METHOD
    Mehnaz, Shakeel
    Khan, Muhammad Nawaz
    Ahmad, Imtiaz
    Abdel-khalek, Sayed
    Alghamdi, Ahmed Mohammed
    Inc, Mustafa
    THERMAL SCIENCE, 2022, 26 : S469 - S474
  • [47] Finite Difference/Collocation Method for a Generalized Time-Fractional KdV Equation
    Cao, Wen
    Xu, Yufeng
    Zheng, Zhoushun
    APPLIED SCIENCES-BASEL, 2018, 8 (01):
  • [48] An accurate collocation method for distributed order time fractional nonlinear diffusion wave equation with error analysis
    Taghipour, M.
    Aminikhah, H.
    RESULTS IN APPLIED MATHEMATICS, 2025, 26
  • [49] A fast time-stepping method based on the hp-version spectral collocation method for the nonlinear fractional delay differential equation
    Guo, Yuling
    Wang, Zhongqing
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
  • [50] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131