The global analysis on the spectral collocation method for time fractional Schrodinger equation

被引:16
|
作者
Zheng, Minling [1 ]
Liu, Fawang [2 ]
Jin, Zhengmeng [3 ]
机构
[1] Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210000, Jiangsu, Peoples R China
基金
澳大利亚研究理事会;
关键词
Time fractional Schrodinger equation; Caputo fractional derivative; z-transform; Spectral collocation method; DISCONTINUOUS GALERKIN METHOD; FINITE-VOLUME METHOD; DIFFUSION EQUATION; NUMERICAL-SOLUTION; ELEMENT-METHOD; APPROXIMATION; STABILITY;
D O I
10.1016/j.amc.2019.124689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a spectral collocation method is proposed and analyzed for solving the time fractional Schrodinger equation. The space derivative is discretized using the collocation method and the time fractional derivative using Grunwald-Letnikov formulation. The stability and convergence of the full discretization scheme are analyzed based on the z-transform. The global behavior of the finite difference spectral collocation method is derived. Numerical examples show a good agreement with the theoretical analysis. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A fractional spline collocation-Galerkin method for the time-fractional diffusion equation
    Pezza, L.
    Pitolli, F.
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2018, 9 (01): : 104 - 120
  • [22] A collocation method for fractional diffusion equation in a long time with Chebyshev functions
    Baseri, A.
    Abbasbandy, S.
    Babolian, E.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 322 : 55 - 65
  • [23] A meshless local collocation method for time fractional diffusion wave equation
    Kumar, Alpesh
    Bhardwaj, Akanksha
    Kumar, B. V. Rathish
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) : 1851 - 1861
  • [24] A JACOBI WAVELET COLLOCATION METHOD FOR FRACTIONAL FISHER'S EQUATION IN TIME
    Secer, Aydin
    Cinar, Melih
    THERMAL SCIENCE, 2020, 24 (01): : S119 - S129
  • [25] Numerical inversion of reaction parameter for a time-fractional diffusion equation by Legendre spectral collocation and mollification method
    Zhang, Wen
    Ding, Zirong
    Wang, Zewen
    Ruan, Zhousheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 128 : 188 - 197
  • [26] Spectral method for solving the time fractional Boussinesq equation
    Zhang, Hui
    Jiang, Xiaoyun
    Zhao, Moli
    Zheng, Rumeng
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 164 - 170
  • [27] Time-fractional Schrodinger equation
    Emamirad, Hassan
    Rougirel, Arnaud
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 279 - 293
  • [28] Time Fractional Schrodinger Equation Revisited
    Achar, B. N. Narahari
    Yale, Bradley T.
    Hanneken, John W.
    ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [29] A space-time spectral collocation algorithm for the variable order fractional wave equation
    Bhrawy, A. H.
    Doha, E. H.
    Alzaidy, J. F.
    Abdelkawy, M. A.
    SPRINGERPLUS, 2016, 5
  • [30] Regularized splitting spectral method for space-fractional logarithmic Schrodinger equation
    Cheng, Bianru
    Guo, Zhenhua
    APPLIED NUMERICAL MATHEMATICS, 2021, 167 : 330 - 355