The global analysis on the spectral collocation method for time fractional Schrodinger equation

被引:16
|
作者
Zheng, Minling [1 ]
Liu, Fawang [2 ]
Jin, Zhengmeng [3 ]
机构
[1] Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210000, Jiangsu, Peoples R China
基金
澳大利亚研究理事会;
关键词
Time fractional Schrodinger equation; Caputo fractional derivative; z-transform; Spectral collocation method; DISCONTINUOUS GALERKIN METHOD; FINITE-VOLUME METHOD; DIFFUSION EQUATION; NUMERICAL-SOLUTION; ELEMENT-METHOD; APPROXIMATION; STABILITY;
D O I
10.1016/j.amc.2019.124689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a spectral collocation method is proposed and analyzed for solving the time fractional Schrodinger equation. The space derivative is discretized using the collocation method and the time fractional derivative using Grunwald-Letnikov formulation. The stability and convergence of the full discretization scheme are analyzed based on the z-transform. The global behavior of the finite difference spectral collocation method is derived. Numerical examples show a good agreement with the theoretical analysis. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Petviashvili Method for the Fractional Schrodinger Equation
    Bayindir, Cihan
    Farazande, Sofi
    Altintas, Azmi Ali
    Ozaydin, Fatih
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [32] THE COLLOCATION METHOD FOR BOUND SOLUTIONS OF THE SCHRODINGER-EQUATION
    YANG, WT
    PEET, AC
    CHEMICAL PHYSICS LETTERS, 1988, 153 (01) : 98 - 104
  • [33] GLOBAL UNIQUENESS FOR THE FRACTIONAL SEMILINEAR SCHRODINGER EQUATION
    Lai, Ru-Yu
    Lin, Yi-Hsuan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 1189 - 1199
  • [34] A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method
    Khader, M. M.
    Saad, K. M.
    CHAOS SOLITONS & FRACTALS, 2018, 110 : 169 - 177
  • [35] Efficient spectral collocation method for fractional differential equation with Caputo-Hadamard derivative
    Zhao, Tinggang
    Li, Changpin
    Li, Dongxia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2903 - 2927
  • [36] Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method
    Taheri, Z.
    Javadi, S.
    Babolian, E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 321 : 336 - 347
  • [37] Efficient spectral collocation method for fractional differential equation with Caputo-Hadamard derivative
    Tinggang Zhao
    Changpin Li
    Dongxia Li
    Fractional Calculus and Applied Analysis, 2023, 26 : 2903 - 2927
  • [38] Legendre Collocation Spectral Method for Solving Space Fractional Nonlinear Fisher's Equation
    Liu, Zeting
    Lv, Shujuan
    Li, Xiaocui
    THEORY, METHODOLOGY, TOOLS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, PT I, 2016, 643 : 245 - 252
  • [39] Time and Space Fractional Schrodinger Equation with Fractional Factor
    Xiang, Pei
    Guo, Yong-Xin
    Fu, Jing-Li
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (01) : 16 - 26
  • [40] A SPACE-TIME SPECTRAL COLLOCATION METHOD FOR SOLVING THE VARIABLE-ORDER FRACTIONAL FOKKER-PLANCK EQUATION
    Amin, Ahmed Z.
    Lopes, Antonio M.
    Hashim, Ishak
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (02): : 969 - 985