The global analysis on the spectral collocation method for time fractional Schrodinger equation

被引:16
|
作者
Zheng, Minling [1 ]
Liu, Fawang [2 ]
Jin, Zhengmeng [3 ]
机构
[1] Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210000, Jiangsu, Peoples R China
基金
澳大利亚研究理事会;
关键词
Time fractional Schrodinger equation; Caputo fractional derivative; z-transform; Spectral collocation method; DISCONTINUOUS GALERKIN METHOD; FINITE-VOLUME METHOD; DIFFUSION EQUATION; NUMERICAL-SOLUTION; ELEMENT-METHOD; APPROXIMATION; STABILITY;
D O I
10.1016/j.amc.2019.124689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a spectral collocation method is proposed and analyzed for solving the time fractional Schrodinger equation. The space derivative is discretized using the collocation method and the time fractional derivative using Grunwald-Letnikov formulation. The stability and convergence of the full discretization scheme are analyzed based on the z-transform. The global behavior of the finite difference spectral collocation method is derived. Numerical examples show a good agreement with the theoretical analysis. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    Wei, Huayi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1218 - 1232
  • [2] Convergence analysis of space-time Jacobi spectral collocation method for solving time-fractional Schrodinger equations
    Yang, Yin
    Wang, Jindi
    Zhang, Shangyou
    Tohidi, Emran
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 387
  • [3] Fourier spectral method with an adaptive time strategy for nonlinear fractional Schrodinger equation
    Qu, Haidong
    She, Zihang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (04) : 823 - 838
  • [4] A conservative spectral collocation method for the nonlinear Schrodinger equation in two dimensions
    Zhang, Rongpei
    Zhu, Jiang
    Yu, Xijun
    Li, Mingjun
    Loula, Abimael F. D.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 310 : 194 - 203
  • [5] Legendre spectral collocation method for distributed and Riesz fractional convection-diffusion and Schrodinger-type equation
    Abdelkawy, M. A.
    Jeelani, Mdi Begum
    Alnahdi, Abeer S.
    Taha, T. M.
    Soluma, E. M.
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [6] An explicit spectral collocation method using nonpolynomial basis functions for the time-dependent Schrodinger equation
    Fang, Jinwei
    Wu, Boying
    Liu, Wenjie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (01) : 186 - 203
  • [7] FRACTIONAL SPECTRAL COLLOCATION METHOD
    Zayernouri, Mohsen
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (01): : A40 - A62
  • [8] The spectral collocation method for solving a fractional integro-differential equation
    Wu, Chuanhua
    Wang, Ziqiang
    AIMS MATHEMATICS, 2022, 7 (06): : 9577 - 9587
  • [9] Computational Solution of the Time-Fractional Schrodinger Equation by Using Trigonometric B-Spline Collocation Method
    Hadhoud, Adel R.
    Rageh, Abdulqawi A. M.
    Radwan, Taha
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [10] A numerical method for solving the time fractional Schrodinger equation
    Liu, Na
    Jiang, Wei
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (04) : 1235 - 1248